Газовым эжектором называется аппарат, в котором полное давление газового потока увеличивается под действием струи другого, более высоконапорного потока. Передача энергии от одного потока к другому происходит путем их турбулентногосмешения. Эжектор прост по конструкции, может работать в широком диапазоне изменения параметров газов, позволяет легко регулировать рабочий процесс и переходить с одного режима работы на другой. Поэтому эжекторы широко применяются в различных областях техники. В зависимости от назначения эжекторы выполняются различным образом.
Рис. 1. Схема аэродинамической трубы с эжектором: 1 — баллон со сжатым воздухом, 2 — эжектор, 3 — рабочая часть трубы.
Так, в показанной на рис. 1 схеме аэродинамической трубы эжектор выполняет роль насоса, позволяющего подать большое количество газа сравнительно невысокого давления за счет энергии небольшого количества газа высокого давления. В баллоне (1) содержится воздух более высокого давления, чем необходимо для работы трубы. Однако количество сжатого воздуха невелико, и для обеспечения достаточно продолжительной работы трубы сжатый воздух выпускают в эжектор (2), где к нему примешивается атмосферный воздух, который засасывается эжектором через рабочую часть трубы (3). Чем больше давление сжатого воздуха, тем большее количество атмосферного воздуха можно привести в движение с заданной скоростью. Часто эжектор используется для поддержания непрерывного тока воздуха в канале или помещении и выполняет, таким образом, роль вентилятора. Примером может служить изображенная на (рис. 2) схема стенда для испытания реактивных двигателей. Струя выхлопных газов, вытекающая из реактивного сопла, подсасывает в эжектор (3) воздух из шахты (1), обеспечивая тем самым вентиляцию помещения и охлаждение двигателя (2). При этом горячие газы смешиваются с атмосферным воздухом, что снижает температуру газа в выхлопной шахте (4) и улучшает условия работы выхлопных устройств (шумоглушителей и др.).
Рис. 2. Схема стенда для испытания турбореактивных двигателей: 1 — входная шахта, 2 — двигатель на балансирном станке, 3 — эжектор, 4 — выхлопная шахта.
Во многих случаях эжектор используют в качестве эксгаустерадля создания пониженного давления в некотором объеме. Таково, например, назначение эжектора в конденсационных системах паросиловых установок. Для увеличения мощности паровой машины или турбины требуется поддерживать, возможно меньшее давление в конденсаторе, куда выпускается отработанныйпар. Эжектор (рис. 3) создает необходимое разрежениевследствие того, что находящиеся в конденсаторе частицы пара и воздуха подхватываются и уносятся высоконапорной струей пара или воды. В вакуумной технике эжекторы аналогичной схемы, работающие на парах ртути, используются для создания глубокого разрежения порядка миллионных долей атмосферы.
Примером удачного использования свойств эжекторов является применение их в газосборных сетях. Источники (скважины) природного газа, расположенные в одном районе, могут давать газ различного давления. Если просто подключить их в общую магистраль, то давление в магистрали необходимо уменьшить несколько ниже давления самого низконапорного источника. Расход газа из низконапорных скважин будет в этом случае невелик из-за малого перепада давлений, а энергия давления газа из высоконапорных скважин будет бесполезно тратиться при расширении (дросселировании) его до давления в общей магистрали. Для эффективного использования всех источников низконапорные скважины целесообразно подключитьв магистраль при помощи эжектора, в котором давлениенизконапорного газа повышается за счет энергии некоторой части газа высоконапорных скважин. Эжектор в этом случае являетсякомпрессором. Таким путем удается одновременно повысить давление газа в магистрали, увеличить производительность низконапорных скважин и подключить в сеть такие источники газа, которые из-за низкого напора невыгодно использовать при простом объединении в общую сеть.
Рис. 3. Схема эжектора паровой конденсационной установки: 1 — пар высокого давления, 2 — пар из конденсатора.
Ниже будет рассмотрена еще одна возможная область использования свойств эжектора, а именно увеличение реактивнойтяги путем подмешивания внешнего воздуха к струе газа, вытекающего из сопла реактивного двигателя.
Независимо от назначения эжектора в нем всегда имеются следующие конструктивные элементы: сопло высоконапорного (эжектирующего) газа (1), сопло низконапорного (эжектируемого) газа (2), смесительная камера (3) и, обычно, диффузор (4) (рис. 4).
Назначение сопел — с минимальными потерями подвести газы к входу в смесительную камеру. Расположение сопел может быть таким, как на рис. 4 (эжектирующий поток внутри, а эжектируемый — по периферии камеры), и обратным (рис. 1), когда эжектирующий газ подается в камеру по внешнему кольцевому соплу. Для сокращения длины камеры смешения один или оба потока могут быть разделены на несколько струй, что требует соответствующего увеличения количества сопел. Взаимное расположение, число и форма сопел не оказывают,однако, существенного влияния на конечные параметры смеси газов. Важным является лишь соотношение между величинамипоперечных сечений потоков эжектируемого и эжектирующего газов на входе в камеру, т. е. отношение суммарных площадей сопел.
Если перепад давления в сопле эжектирующего газа значительно превышает критическую величину, то в ряде случаев оказываетсявыгодным применение сверхзвукового сопла. При этоммогут быть улучшены параметры эжектора на расчетном режиме.
Однако и при больших сверхкритических отношениях давлений можно использовать эжектор с нерасширяющимся соплом, в котором скорость истечения эжектирующего газа не превышает скорости звука. Такой эжектор принято называть звуковым. Это наиболее распространенный тип эжектора, эффективно работающий в широком диапазоне изменения параметровгазов.
Рис. 4. Принципиальная схема эжектора: 1 — сопло эжектирующего газа, 2 — сопло эжектируемого газа, 3 — камера смешения, 4 — диффузор.
Камера смешения может быть цилиндрической или иметь переменную по длине площадь сечения. Форма камеры оказывает заметное влияние на смешение газов. Поэтому, хотя ниже будут рассматриваться в основном эжекторы с цилиндрической смесительной камерой, мы расскажем также о принципе расчета эжекторов с камерой переменного сечения.
Длина камеры выбирается такой, чтобы в ней практически успел закончиться процесс смешения потоков, однако по возможности короткой, с тем, чтобы не увеличивать гидравлических потерь и сократить общие габариты эжектора.
В эжекторе, показанном на рис. 4, выходное сечение сопел совпадает с входным сечением цилиндрической смесительной камеры. Существующие методы расчета эжектора составлены именно для такой схемы, поэтому она и будет рассматриваться в дальнейшем. Однако на практике сопла часто располагают нанекотором расстоянии от входного сечения камеры. Так, например, сопло двигателя на стенде (рис. 2) нельзя поместить во входное сечение цилиндрической камеры эжектора, так как существующее в этом сечении разрежение изменит распределение Давлений на внешней поверхности сопла, что внесет погрешностьв величину измеряемой реактивной тяги. Диффузор устанавливается на выходе из смесительной камеры в тех случаях, когда желательно повысить статическое давление смеси газов на выходе из эжектора или когда при заданном давлении на выходе желательно получить низкое статическое давление в камере смешения и во входном сечении эжектора.
Следует отметить, что эжектор может работать и без диффузора. В этом случае конечное сечение смесительной камеры одновременноявляется выходным сечением эжектора. Иногда вместо диффузора на выходе из смесительной камеры устанавливается сужающееся сопло или сопло Лаваля. Это бывает целесообразным тогда, когда конечной задачей является ускорение потока газа после смешения. Так, например, в различных схемах двухконтурных реактивных двигателей газовые потоки, выходящие из контуров, смешиваются в общей камере, а затем вытекают в атмосферу через общее реактивное сопло дозвукового или сверхзвукового типа.