Управление судном

Решение задач на маневренном планшете вариант 3

Вариант №3

Вы можете заказать решение задач на расхождение на маневренном планшете на нашем сайте.

Условия: Кн=0°; Vн=15 узл; Dзад=2 мили; Тму=10ч29м

 

Т судовое (час.мин) Пеленг (град) Дистанция (мили)
10ч20м 60 10
10ч23м 61 9
10ч26м 62 8

 

 

 

Определить:

Кц=295°

Vц=20 узл

Dкр=1.7 мили

Ткр=10ч48м

Tрас=21мин

Tв=10ч50м

Sр=4.2 мили

Dотх=0

Расхождение в заданной дистанции осуществляем маневром по уменьшению скорости.

Кн1=0°

Vн1=12 узл

 

Курсовая расчет ходкости судна вариант 25 часть 3

3. РАСЧЕТ ДВИГАТЕЛЬНО–ДВИЖИТЕЛЬНОГО
КОМПЛЕКСА С ГРЕБНЫМ ВИНТОМ ФИКСИРОВАННОГО ШАГА
В НЕПОВОРОТНОЙ НАСАДКЕ

Направляющие насадки на гребные винты являются эффективным средством повышения пропульсивных качеств судов с тяжело нагруженными движителями и представляют профилированное кольцо с расположенным в нем гребным винтом. Направляющие насадки подразделяются на неповоротные и поворотные. Последние устанавливаются для улучшения маневренных качеств судна.
Упор насадки , а упор комплекса складывается из упора гребного винта и упора насадки:
(1)
Основным кинематическим параметром, от которого зависит режим работы комплекса «гребной винт – насадка» и его гидродинамические характеристики, является относительная поступь комплекса , определяемая по скорости перемещения комплекса относительно жидкости
, (2)
где — скорость судна; — расчетный коэффициент попутного потока, определяемый экспериментально.
Динамические характеристики комплекса включают упор комплекса , упор гребного винта и упор насадки :
. (3)
В этой формуле отношение называется коэффициентом засасывания насадки.
При работе комплекса за корпусом судна сопротивление судна возрастает на величину силы засасывания , поэтому
(4)
где — полезная тяга.
При взаимодействии комплекса с корпусом коэффициент засасывания определится выражением
. (5)
Отсюда получаем
(6)
.
Эффективность использования мощности, подведенной к гребному винту, определяется значением КПД комплекса в свободной воде
(7)
где — крутящий момент на гребном винте при его работе в насадке.
Пропульсивный коэффициент системы «гребной винт – насадка — корпус судна» определяем по формуле
(8)
Здесь — крутящий момент на гребном винте при работе комплекса за корпусом судна.
С учетом связи между и , а также между и получим
(9)
где — коэффициент влияния корпуса;
— коэффициент влияния неравномерности попутного потока на момент винта, которая учитывается выражением

Гидродинамические характеристики комплекса представляют в безразмерном виде путем деления силы на , а момента — на .
Таким образом, будем иметь коэффициент упора комплекса «гребной винт — неповоротная насадка»
(10)
где — коэффициент упора гребного винта;
— коэффициент упора насадки.
Для КПД комплекса «гребной винт – неповоротная насадка» в свободной воде получим Читать далее

Курсовая расчет ходкости судна вариант 25 часть 2

2. РАСЧЕТ ДВИГАТЕЛЬНО-ДВИЖИТЕЛЬНОГО КОМПЛЕКСА
С ГРЕБНЫМ ВИНТОМ ФИКСИРОВАННОГО ШАГА

Целью второй части курсового проекта является расчет и выбор двигательно-движительного комплекса, обеспечивающего заданную скорость хода в условиях эксплуатационного рейса с последующей оценкой ходовых и тяговых качеств судна на различных режимах движения.
После выбора типа и мощности главного двигателя и определения расчетного режима работы гребного винта уточняют его основные геометрические и конструктивные элементы, которые должны удовлетворять полному использованию мощности двигателя.
При выполнении расчетов потребуется знание предельно допустимого диаметра гребного винта (габаритного диаметра) . Величина определяется из условия размещения винта в кормовом подзоре, а также из требования достаточного погружения его под свободную поверхность.
Для определения габаритного диаметра в первом приближении можно воспользоваться эмпирической формулой, связывающей величину с осадкой судна в районе расположения гребного винта :
(1)
Параметры гребных винтов в курсовой работе определяются с помощью формул, выведенных на основе математической обработки диаграмм серийных испытаний гребных винтов, построенных по способу Э. Э. Папмеля.

2.1. Определение исходных расчетных величин

Для выполнения расчетов движителя по серийной диаграмме необходимо перейти от заданных параметров судна: скорости хода в узлах и полезной тяги , равной в общем случае суммарному буксировочному сопротивлению судна и воза , к характеристикам движителя: поступательной скорости и упора гребного винта .
Определим коэффициенты — коэффициент попутного потока, — коэффициент засасывания, KDE – коэффициент задания, Читать далее

Курсовая расчет ходкости судна вариант 25 часть 1

Введение

Ходкость. называют способность судна двигаться с заданной скоростью при эффективном использовании мощности энергетической установки. Это мореходное качество в значительной степени определяет энергетические затраты, сопутствующие эксплуатации судна, а следовательно и экономические показатели последнего.
На любое тело, движущееся в жидкости, действует сила сопротивления. Чтобы ее преодолеть, к телу необходимо приложить полезную тягу-усилие, равное по величине и противоположное по направлению. При этом будет обеспечено установившееся движение, т.е. прямолинейное с постоянной скорость. Именно такое движение является предметом изучения в курсе «ходкость».
Устройство, предназначенное для создания полезной тяги называется движителем. таким образом, ходкость включает два раздела: сопротивление среды движению судна и движители.
Ходкость одно из важнейших мореходных качеств, для обеспечения которого в процессе проектирования в зависимости от основных режимов плавания судна осуществляется:
-выбор и оптимизация главных размерений наружных обводов корпуса для достижения наименьших величин полного сопротивления движению судна;
-выбор типа и определенных оптимальных элементов движения;
-выбор типа и основных характеристик главного движителя.
Основной целью работы является освоение практических методов расчета полного сопротивления движению судна и гидродинамических характеристик гребного винта по диаграммам серийных модельных испытаний. Кроме того, в ходе выполнения расчетов появляется возможность детально учесть взаимодействие всех элементов пропульсивного комплекса корпуса судна, гребного винта и главного двигателя, а также изучить способы построения и использования ходовых характеристик судна, отражающих это взаимодействие.
Для решения указанной цели необходимо для заданного судна рассчитать значения полного сопротивления R в диапазоне скоростей хода от нуля до скорости, приблизительно на 10% превышающей заданное значение VS. Количество расчетных точек не мене 5. Построить кривую полного сопротивления в зависимости от скорости хода.

Вариант 25.
Тип судна: МРТ (малый рыболовный траулер).
Длина судна L=26 м
Ширина судна В=7.6 м
Осадка судна d=2.08 м
Коэффициент общей полноты Cb=0,553
Коэффициент полноты мидель-шпангоута Cm=0,86
Абсцисса центра величины объемного водоизмещения XC=-0,03
Заданное значение хода судна VS=10,0 уз Читать далее

Буксировка судов. Управление судном при буксировке.

Если буксируемое судно ошвартовано лагом, то буксирный трос с кормы буксирующего судна проводят вдоль его борта до носовой части буксируемого чисто от всех выступающих частей. Чтобы трос не ушел в воду, его придерживают у борта серьгами из растительного или синтетического троса. Затем конец буксирного троса крепят к якорной цепи (якорю) или браге. Оставшуюся часть троса укладывают на корме буксировщика длинными шлагами таким образом, чтобы конец, идущий к буксируемому судну, мог свободно вытравливаться на рассчитанную длину буксира. Для равномерного вытравливания и чтобы избежать ускорения буксирного троса, отдельные его шлаги крепят слабыми схватками к кнехтам. В том случае, когда швартовка лагом невозможна, буксирный трос подается следующим образом. Буксирующее судно (буксировщик) становится на якорь впереди буксируемого. Медленно потравливая якорную цепь и маневрируя рулем и машиной, буксировщик подходит к буксируемому судну на расстояние подачи бросательного конца. Либо спускают шлюпку и на ней доставляют проводник из растительного или синтетического троса. На буксируемом судне, приняв проводник или бросательный конец, выбирают их, а вместе с ними и буксирный трос.

При подаче буксирного троса в открытом море и неспокойной погоде следует определить, какое из судов имеет больший дрейф. Для этого буксирующее судно подходит к буксируемому и располагается на определенном расстоянии в линии створа его мачт. Остановив свое движение, буксирующее судно определяет величину дрейфа каждого судна. Если буксировщик дрейфует быстрее, чем буксируемое судно, то он располагается у него с наветренной стороны, а если буксировщик дрейфует медленнее, чем буксируемое судно, он располагается с подветренной стороны буксируемого судна. Курса обоих судов должны быть паралельными. Когда буксируемое судно тоже способно маневрировать то оно подходит к корме буксировщика на расстояние подачи бросательного конца. В случае возникновение опасности Навала на буксировщик буксируемое судно дает ход назад, а буксировщик вперед. Читать далее

Сигнальный огонь. Порядок несения сигнальных огней и знаков на судах с механическими двигателями и парусных судах на ходу

Навигационные сигнальные огни и знаки являются важнейшими источниками взаимной информации судов, необходимой для правильной оценки ситуации их встречи и принятия предусмотренных правилами плавания и маневрирования действий для безопасного расхождения.
Независимо от условий погоды, навигационные сигнальные огни должны выставляться от восхода до захода солнца, а также в светлое время суток в условиях ограниченной видимости. Время включения и выключения этих огней должно регистрироваться в судовом журнале.
Требования, касающиеся несения на судах знаков, должны соблюдаться в дневное время. Необходимо учитывать, что огни и знаки не являются взаимозаменяемыми, и установленный порядок выставления огней и знаков должен строго соблюдаться, даже если в дневное время в условиях ограниченной видимости зажигаются огни. Читать далее

Реклама

Помощь студентам