Радионавигационные приборы и системы

Спутниковая система GPS. Состав системы GPS. Особенности использования.

В статье рассмотрен принцип работы, состав и особенности системы спутникового позиционирования GPS (англ. Global Positioning System).
Навигационная система Global Positioning System (GPS) является частью комплекса NAVSTAR, который разработан, реализован и эксплуатируется Министерством обороны США. Разработка комплекса NAVSTAR (NAVigation Satellites providing Time And Range – навигационная система определения времени и дальности) была начата ещё в 1973 году, а уже 22 февраля 1978 года был произведён первый тестовый запуск комплекса, а в марте 1978 года комплекс NAVSTAR начали эксплуатировать. Первый тестовый спутник был выведен на орбиту 14 июля 1974 года, а последний из 24 необходимых спутников для полного покрытия земной поверхности, был выведен на орбиту в 1993 году. Гражданский сегмент военной спутниковой сети NAVSTAR принято называть аббревиатурой GPS, коммерческая эксплуатация системы в сегодняшнем виде началась в 1995 году.
Спустя более 20-ти лет с момента тестового запуска системы GPS и 5-ти лет с момента начала коммерческой эксплуатации Глобальной системы позиционирования GPS, 1 мая 2000 года министерство обороны США отменило особые условия пользования системой GPS, существовавшие до тех пор. Американские военные выключили помеху (SA – selective availability), искусственно снижающую точность гражданских GPS приёмников, после чего точность определения координат с помощью бытовых навигаторов возросла как минимум в 5 раз. После отмены американцами режима селективного доступа точность определения координат с помощью простейшего гражданского GPS навигатора составляет от 5 до 20 метров (высота определяется с точностью до 10 метров) и зависит от условий приема сигналов в конкретной точке, количества видимых спутников и ряда других причин. Приведенные цифры соответствуют одновременному приему сигнала с 6-8 спутников. Большинство современных GPS приёмников имеют 12-канальный приемник, позволяющий одновременно обрабатывать информацию от 12 спутников. Военное применение навигации на базе NAVSTAR обеспечивает точность на порядок выше (до нескольких миллиметров) и обеспечивается зашифрованным P(Y) кодом. Информация в C/A коде (стандартной точности), передаваемая с помощью L1, распространяется свободно, бесплатно, без ограничений на использование. Читать далее





Похожие статьи





Радиолокационная станция РЛС. Cтруктурная схема и принцип работы судовой РЛС

В статье рассмотрен принцип работы и общая структурная схема судовой РЛС. Действие радиолокационных станций (РЛС) основано на использовании явления отражения радиоволн от различных препятствий, расположенных на пути их распространения, т. е. в радиолокации для определения положения объектов используется явление эха. Для этого в РЛС имеется передатчик, приемник, специальное антенно-волноводное устройство и индикатор с экраном для визуального наблюдения эхо-сигналов. Таким образом, работу радиолокационной станции можно представить так: передатчик РЛС генерирует высокочастотные колебания определенной формы, которые посылаются в пространство узким лучом, непрерывно вращающимся по горизонту. Отраженные колебания от любого предмета в виде эхо-сигнала принимаются приемником и изображаются на экране индикатора, при этом имеется возможность немедленно определять на экране направление (пеленг) на объект и его расстояние от судна.
Пеленг на объект определяется по направлению узкого радиолокационного луча, который в данный момент падает на объект и отражается от него.
Расстояние до объекта может быть получено путем измерения малых промежутков времени между посылкой зондирующего импульса и моментом приема отраженного импульса, при условии, что радиоимпульсы распрастраняются со скоростью с = 3 Х 108 м/сек. Судовые РЛС имеют индикаторы кругового обзора (ИКО), на экране которого образуется изобр ажение окружающей судно навигационной обстановки. Читать далее

Добротность гирокомпаса. Что такое добротность.

Добротность гирокомпаса (D) выражается отношением максимального направляющего момента гирокомпаса на данной широте к удельному моменту кручения подвеса (при закручивании на угол, равный радиану).

Гирокомпас — быстровращающееся вокруг своей оси симметрии тело. Ось, вокруг которой происходит вращение, может изменять свое положение в пространстве. Гирокомпасом называется гироскопический навигационный прибор, обладающий направляющим моментом и предназначенный для выработки курса судна и определения направления на земные ориентиры.

Добротность гирокомпаса (D) выражается отношением максимального направляющего момента гирокомпаса на данной широте к удельному моменту кручения подвеса (при закручивании на угол, равный радиану). Добротность определяется в соответствии с указаниями руководства по эксплуатации прибора.

Если главную ось свободного гироскопа установить в плоскости меридиана, то с течением времени вследствие вращения Земли ось будет уходить из этой плоскости, совершая относительно последней видимое движение. У гирокомпаса появится направляющий момент. Направляющий момент достигает максимального значения на экваторе при отведении главной оси гироскопа от меридиана на 90°. С увеличением широты направляющий момент уменьшается и на полюсе обращается в нуль. Поэтому на полюсе гирокомпас работать не может.

Угол закручивания подвеса ψ состоит из двух углов:

ψ = ψК + ψТ,

где ψК — угол закручивания подвеса, возникающий из-за неточного ориентирования корпуса гироблока;

ψТ — угол закручивания подвеса, возникающий из-за изменения нулевого положения подвеса.

Величины ψК и ψТ определяют по формулам:ψК = NК – N0Т = (n0 — n К)*t,где NК — отсчет по лимбу гирокомпаса, соответствующий положению визирной оси зрительной трубы, при котором средний штрих шкалы в поле зрения автоколлимационной трубы совмещен с неподвижным биссектором;n К — отсчет по шкале  автоколлимационной трубы, соответствующей положению неподвижного биссектора при определении нуля подвеса;n0 — место нуля подвеса;t — цена деления шкалы в поле зрения автоколлимационной трубы (в угловой мере).

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5 (7 оценок, среднее: 4,43 из 5)
Загрузка...

Принцип действия индукционного магнитного компаса

Как уже отмечалось выше, наряду со стрелочными МК для морских судов стали разрабатываться индукционные компасы. Основными их достоинствами являются:

•отсутствие картушки и, как следствие, ошибки из-за наличия угловеё застоя;

•отсутствие погрешности, обусловленной увлечением картушки поддерживающей жидкостью, заполняющей котелок МК;
•меньшие величины динамических погрешностей МК;

•отсутствие необходимости устанавливать магнитный датчик прибора в громозд-ком нактоузе, что позволяет размещать его в наиболее благоприятных в магнит-ном отношении местах на судне;
•малые габариты магнитного датчика и компактное девиационное устройство или его отсутствие.
Чувствительным элементом рассматриваемого МК является индукционный дат-чик (ИД), содержащий, как и в электромеханической системе дистанционной пере-дачи информации, два или три магнитных зонда, каждый из которых позволяет оп-ределить составляющую напряжённости магнитного поля вдоль его собственной оси. Только теперь измеряется судовое магнитное поле, основу которого составляет
3 магнитное поле Земли. Совместное ис-4 пользование сигналов этих зондов даёт Читать далее

Погрешности индукционных компасов

Основные погрешности индукционного магнитного компаса обусловлены:

•наличием не скомпенсированного судового магнитного поля и его неравномер-ностью;
•влиянием качки судна;

•ошибками систем дистанционной передачи информации; •инструментальными ошибками;
•неточностью ориентации индукционного датчика относительно диаметральной плоскости судна.
Влияние не скомпенсированного судового магнитного поля будет подробно рас-смотрено в последующих разделах пособия. Здесь лишь отметим, что имеются све-дения [5], что влияние неоднородности судового магнитного поля может быть дос-таточно большим, что может потребовать специальных мер для его ослабления.

В результате качки судна, даже при наличии маятниковой стабилизации, индук-ционный датчик отклоняется от плоскости горизонта, и на него начинает оказывать влияние вертикальная составляющая судового магнитного поля. Это приводит к по-явлению периодической составляющей погрешности компаса, которая может за-труднять съём показаний. С целью уменьшения влияния этой погрешности произво- Читать далее

Рекомендуем

Заказать новую работу