Фотоэлемент это. Фотоэлемент с внешним фотоэффектом

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Фотоэлементом называется прибор, в котором воздействие лучистой энергии оптического диапазона вызывает изменение его электрических свойств. Фотоэлементы разделяются на три типа: 1) с внешним фото-эффектом, 2) с внутренним фотоэффектом, 3) с запирающим слоем. В фотоэлементе с внешним фотоэффектом действие света вызывает выход из поверхностного слоя фотокатода электронов во внешнее пространство — в вакуум или сильно разреженный газ. Схема устройства такого фотоэлемента приведена на рис.15-а. На внутреннюю стенку стеклянной колбы 1, из которой откачан воздух, с одной стороны нанесен фотокатод 2. Широкое применение получили сурьмяно-цезиевые фотокатоды. В центре колбы вакуумного фотоэлемента укреплен металлический анод 3 в виде небольшого кольца или пластинки. Колба снабжена пластмассовым цоколем 4. В нижней части цоколя находятся контактные штырьки 5, к которым подводятся соединительные провода от фотокатода и анода. При помощи этих штырьков фотоэлемент вставляется в фотоэлементную панель.

Специальные типы трансформаторов: измерительные трансформаторы тока и напряжения

Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов. Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения. При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи. Схема включения вольтметра с трансформатором напряжения изображена на рис.1. Трансформатор напряжения устроен так же, как и обычный трансформатор. Для него справедливы соотношения U1 ≈ E1 = w1 = KU,  откуда   U2≈U1 w2 U2 E2 w2 w1 Рис. 1. Схема включения Читать дальше …

Регулирование скорости вращения электродвигателя постоянного тока

Для получения высокой производительности и требуемой точности или шероховатости обработки изделий, остановки исполнительного органа производственной машины в нужном месте с заданной степенью точности и т.д. приходится принудительно изменять частоту вращения или скорость линейного перемещения исполнительного органа. Принудительное изменение частоты вращения или линейного перемещения исполнительного органа производственной машины в соответствии с требованием производственного процесса называется регулированием скорости. В настоящее время взамен коробок скоростей, вариаторов и т.п. все больше применяется электрическое регулирование частоты вращения, в основе которого лежит использование искусственных, механических характеристик электродвигателей. Электрическое регулирование частоты вращения приводит к упрощению, облегчению и удешевлению механической части машин и механизмов, упрощению управления, возможности получения плавного регулирования частоты вращения в широком диапазоне. При питании двигателей от источника постоянного напряжения частоту вращения можно регулировать следующим образом: 1) изменением сопротивления цепи якоря; 2) изменением значения магнитного потока. Естественно, что второй метод регулирования применим лишь к двигателям параллельного и смешанного возбуждения. Для регулирования частоты вращения путем изменения сопротивления цепи якоря обычно используют тот же реостат, что и для пуска двигателя. Реостат, используемый как для пуска, так и для регулирования частоты вращения, находится в отношении нагревания в более тяжелых условиях, чем реостат, служащий только для пуска. Рассматриваемый способ регулирования частоты вращения не требует сложного оборудования и дает возможность получить Читать дальше …

Задача 2 по ТОЭ общей электротехнике с решением вариант 5 заказать недорого онлайн

Лучшие контрольные работы по ТОЭ, электротехнике по максимально доступной цене. На сайте можно заказать подготовку контрольных работ по электротехнике. Цепь переменного тока содержит активное сопротивление R=3 Ом, индуктивное Хl=2 Ом и емкостное Хс=6 Ом соединены последовательно и включены в цепь с напряжением 50 В. Определить полное сопротивление цепи, ток, напряжения, приложенные к элементам схемы, угол сдвига фаз, активную, реактивную и полную мощность цепи P, Q, S. Построить в масштабе векторную диаграмму.   В схеме протекает синусоидальный ток  Определим напряжение на входе схемы. В соответствии со вторым законом Кирхгофа, Из выражения видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90o, напряжение по емкости отстает по фазе от тока на 90o. Запишем уравнение в комплексной форме:

Измерение сопротивления изоляции сети переменного тока, находящегося под напряжением

Принцип действия большинства приборов, предназначенных для работы в сетях переменного тока, находящихся под рабочим напряжением, основан на использовании метода наложения постоянного измерительного напряжения (рис. 1), аналогичного методу измерений при снятом напряжении. Так как под действием рабочего напряжения Uф в измерительной цепи может протекать переменный ток, то для ее защиты применяют индуктивный или, как показано на схеме, емкостный фильтр (цепь R1—Cf). Конденсатор Сf также защищает измерительную цепь от бросков тока Iизм в переходных режимах работы сети (при подключении электроприемников) (рис. 1). Рис. 1. Контроль изоляций сетей переменного тока методом наложения постоянного напряжения Измерение сопротивления изоляции производят при нажатой кнопке К, когда измерительная цепь замыкается через миллиамперметр А, проградуированный в единицах сопротивления. При «свободном» состоянии кнопки (в режиме автоматического контроля) цепь замыкается через резистор RД, являющийся входным элементом блока сигнализации БС. Падение напряжения на этом резисторе, так же как и сила тока в измерительной цепи, однозначно определяется значением эквивалентного сопротивления изоляции сети. При уменьшении сопротивления изоляции это напряжение возрастает; в случае снижения сопротивления до определенного значения (установленной для данной сети уставки срабатывания сигнализации Uуст) на выходе БС появляется соответствующий сигнал (световой или звуковой).На таком принципе работают устройства «Электрон-1» (автоматический контроль и измерение), ПКИ (автоматический контроль) и щитовые мегаомметры М1423, М1503, М1527, М1623, Читать дальше …

Реверс электроходов, имеющих асинхронные и синхронные двигатели

Пуск и реверс синхронного двигателя осуществляется в асинхронном режиме, в виду чего работа синхронных и асинхронных гребных электродвигателей при пуске и реверсе аналогична. Основное различие заключается в том, что если данные процессы для асинхронного двигателя заканчиваются выведением его на естественную (асинхронную) характеристику, то синхронный двигатель их асинхронного режима еще должен перейти в синхронный, что производится при подаче возбуждения в обмотку ротора двигателя. Поэтому пуск и реверс рассмотрим для ГЭУ с синхронными гребными электродвигателями. Пуск гребного электродвигателя. При пуске гребного электродвигателя, мощность которого примерно равна мощности питающих генераторов, напряжение главной цепи в результате реакции статора генераторов резко снижается. При этом асинхронный момент двигателя, пропорциональный квадрату напряжения. может настолько уменьшиться, что не окажется в состоянии преодолеть момент сопротивления винта и разогнать двигатель до асинхронной скорости. Для увеличения пускового и максимального моментов двигателя применяют перевозбуждение (форсировку возбуждения) генератора. В ГЭУ допускают увеличение тока возбуждения генераторов в 3—6 раз. Пусковые характеристики синхронного двигателя без форсировки возбуждения генератора (кривая 1) и с форсировкой (кривая 2) приведены на рис. 1. Двигатель под действием асинхронного момента разгоняется до подсинхронной скорости (0,95 nc), при которой включается возбуждение. и возникший при этом синхронизирующий момент втягивает двигатель в синхронизм. Асинхронный момент, развиваемый двигателем при подсинхронной скорости, называется входным, или подсинхронным. Читать дальше …

Источники света. Световые величины.

С физической точки зрения источником света может быть названа любая материальная система, излучающая электромагнитную энергию в оптической области спектра. В технике источниками света называют приборы, служащие для преобразования какого-либо вида энергии в энергию оптического излучения. Источники света могут быть как естественными (светящие небесные тела, молния и др.), так и искусственными (свеча, электрическая лампа и др.). В современных искусственных источниках света для преобразования в свет используется преимущественно электрическая энергия. Такие источники света называются электрическими. Электрические источники света можно классифицировать (разделить на классы, группы) по многим признакам, однако главными из них являются: механизм генерирования света (вид излучения); назначение (область применения); конструктивно-технологические особенности. По первому признаку (вид излучения) электрические источники света делятся на три больших класса: ■Тепловые ■Люминесцентные ■Смешанного излучения. К тепловым электрическим источникам оптического излучения относятся прежде всего разнообразные лампы накаливания, в которых свет излучается проводником (вольфрамовым телом накала), накаленным протекающим через него электрическим током. К этому классу можно также отнести: электрические дуги между угольными электродами, основным источником излучения которых является поверхность электрода; газокалильные лампы, в которых излучают сетки, накаленные внешней теплотой; электрические инфракрасные излучатели. К люминесцентным источникам света относятся такие источники, свечение которых основано на явлении люминесценции. Люминесценция не подчиняется законам теплового излучения. В основе ее лежит индивидуализированный перевод атомов и Читать дальше …

Типы двигателей постоянного тока. Двигатель постоянный ток.

Двигатели постоянного тока прежде всего различаются по характеру возбуждения. Двигатели могут быть независимого, последовательного и смешанного возбуждения. Параллельное возбуждение можно не рассматривать. Даже если обмотка возбуждения подключается к той же сети, от которой питается цепь якоря, то и в этом случае ток возбуждения не зависит от тока якоря, так как питающую сеть можно рассматривать как сеть бесконечной мощности, а ее напряжение постоянным. Обмотку возбуждения всегда подключают непосредственно к сети, и поэтому введение добавочного сопротивления в цепь якоря не оказывает влияния на режим возбуждения. Той специфики, которая существует при параллельном возбуждении в генераторах, здесь быть не может. В двигателях постоянного тока малой мощности часто используют магнитоэлектрическое возбуждение от постоянных магнитов. При этом существенно упрощается схема включения двигателя, уменьшается расход меди. Следует однако иметь в виду, что, хотя обмотка возбуждения исключается, габариты и масса магнитной системы не ниже, чем при электромагнитном возбуждении машины. Свойства двигателей в значительной мере определяются их системой возбуждения. Чем больше габариты двигателя, тем, естественно, больше развиваемый им момент и соответственно мощность. Поэтому при большей скорости вращения и тех же габаритах можно получить большую мощность двигателя. В связи с этим, как правило, двигатели постоянного тока, особенно малой мощности, проектируются на большую частоту вращения — 1000-6000 об/мин. Следует, однако, иметь Читать дальше …