Электрооборудование судов

Специальные типы трансформаторов: измерительные трансформаторы тока и напряжения

Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов.
Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения.
При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи. Читать далее

Аварийная электростанция. Состав оборудования, основные требо-вания. Схема распределительного щита и его связь с главным распределительным щитом.

Аварийный источник электроэнергии на грузовых судах
Должен быть предусмотрен автономный аварийный источник электро-энергии. Аварийный источник электроэнергии и связанное с ним трансформа-торное оборудование, если оно имеется, а также переходный аварийный источник энергии, аварийный распределительный щит и щит аварийного освещения должны быть расположены выше самой верхней непрерывной палубы и быть легко доступны с открытой палубы. Они не должны размещаться в нос от таранной переборки, кроме случаев, когда Администрация разрешает это в исключительных обстоятельствах.
Расположение аварийного источника электроэнергии и связанного с ним трансформаторного оборудования, если оно имеется, а также переходного аварийного источника энергии, аварийного распределительного щита и щита аварийного электрического освещения по отношению к основному источнику электроэнергии и связанному с ним трансформаторному оборудованию, если оно имеется, и главному распределительному щиту должно быть таким, чтобы Администрация была убеждена, что пожар или другая авария в помещениях, в которых находятся основной источник электроэнергии, связанное с ним трансформаторное оборудование, если оно имеется, а также главный распределительный щит, или в любом машинном помещении категории А не помешают подаче, регулированию и распределению аварийной электроэнергии. Читать далее

Причины искрения под щетками коллектора, методы устранения искрения.

Искрением щеток сопровождается большинство неисправностей в машинах постоянного тока. Поэтому сам по себе этот несомненный признак какого-то расстройства в машине так же мало говорит электротехнику, как жар у больного говорит врачу. Но стоит нам вдуматься в это явление, спросить себя, что такое электрическая искра, чтобы ответ на этот вопрос указал нам два рода неисправностей, способных вызывать искрение.
Электрическая искра, это — переход электрического тока через воздушный промежуток между проводниками. Чем слабее ток и чем меньше воздушный промежуток, тем слабее и незаметнее искра. Электрическая машина строится так, чтобы при ее исправном состоянии и правильной работе заметного искрения не происходило, потому что это далеко не безобидное явление: искры обжигают медь коллектора и постепенно разрушают его, да и щетки от искр быстро сгорают. Следовательно, если искры под щеткой все-таки замечаются, то либо воздушный промежуток между коллектором и щеткой, либо сила тока стали больше, чем им следует быть.
Неисправности, вызывающие искрение вследствие ослабления контакта. Читать далее

Устройство, принцип действия однофазного трансформатора.

Основные части трансформаторов – обмотки, осуществляющие электромагнитное преобразование энергии, и магнитопровод (магнитная система), выполненный из ферромагнитного материала и предназначенный для локализации магнитного потока и усиления электромагнитной связи обмоток. Магнитопровод трансформаторов малой мощности изготавливают из листовой или ленточной электротехнической стали толщиной 0,1 — 0,35 мм.

Рис. 1
В зависимости от конфигурации магнитопровода различают трансформаторы стержневого, броневого и кольцевого типов. Конструктивные схемы таких двухобмоточных трансформаторов с ленточным магнитопроводом представлены соответственно на рис. 1, а-в. Магнитопровод 1 навивают из узкой ленты на станках; при этом магнитопровод броневого типа (рис. 1, б) собирают из двух магнитопроводов стержневого типа. Слои ленты изолируют друг от друга тонким слоем окисла, пленкой лака или бумагой с целью уменьшения вихревых токов, наводимых в магнитопроводе переменным магнитным потоком. Навитые магнитопроводы трансформаторов стержневого и броневого типов разрезают на две половины по линии А-А для создания возможности монтажа на них заранее намотанных обмоток. После монтажа обмоток половины вновь соединяют и плотно стягивают специальными обжимами. Использование ленты, нарезанной вдоль направления наибольшей магнитной проницаемости материала, позволяет создавать магнитопроводы на всех участках которых магнитный поток идет по пути наименьшего магнитного сопротивления материала. Участки магнитопровода, на которых расположены обмотки, называют стержнями, остальные участки – ярмом. Для обеспечения постоянной магнитной индукции по всему магнитопроводу у трансформаторов броневого типа ширина центрального стержня в два раза больше, чем боковых участков ярма. Читать далее

Конструкция и принцип действия асинхронного короткозамкнутого электродвигателя.

Асинхронные бесколлекторные двигатели нашли наиболее широкое распространение благодаря сравнительной простоте и надежности в эксплуатации. Коллекторные двигатели имеют ограниченное применение в установках, где требуется регулировать скорость приводимых механизмов в широких пределах. Однако они относительно тяжелы, дороги, имеют худшие рабочие характеристики по сравнению с бесколлекторными двигателями, а главное менее надежны в эксплуатации из-за тяжелых условий коммутации тока.
Асинхронные бесколлекторные машины имеют два основных исполнения: с короткозамкнутой обмоткой ротора и с фазной обмоткой ротора — с контактными кольцами. С точки зрения происходящих электромагнитных процессов в асинхронном двигателе можно выделить две наиболее важные части: неподвижный статор, обеспечивающий создание вращающегося магнитного поля, и вращающийся ротор, в котором создается электромагнитный момент, передаваемый приводимому механизму. Сердечники статора набираются из листов электротехнической стали толщиной 0,5 мм и реже 0,35 мм, изолированных друг от друга лаковым покрытием (в сердечниках роторов двигателей малой мощности изоляцией служит слой окалины на поверхности листа). В сердечниках статора и ротора сделаны специальные пазы, в которых размещаются соответствующие обмотки. Читать далее

Найти готовую работу