Типы трансформаторов тока. Измерительные трансформаторы тока и напряжения.



Для расширения пределов измерения измерительных приборов в цепях переменного тока высокого напряжения используются трансформаторы напряжения и трансформаторы тока. Расширение пределов измерения с помощью добавочных резисторов и шунтов в этих цепях неприемлемо по той причине, что обмотки измерительных приборов находились бы под высоким напряжением и эксплуатация их представляла бы большую опасность для обслуживающего персонала. Возникли бы большие трудности по выполнению надежной изоляции измерительных приборов.
Для защиты высоковольтных сетей и оборудования используются всякого рода реле защиты, которые включаются в сеть так же, как и измерительные приборы,— с помощью трансформаторов тока и напряжения.
При использовании измерительных трансформаторов измерительные приборы и реле подключаются к вторичной обмотке измерительного трансформатора, надежно изолированной от первичной высоковольтной обмотки. Вторичные обмотки выполняются на малые напряжения, не опасные для обслуживающего персонала. Расширение пределов измерения амперметров при использовании шунтов в цепях переменного тока приводит к существенным погрешностям из-за индуктивностей обмотки амперметра и шунта. По этой причине для расширения пределов измерения амперметров всегда используются трансформаторы тока независимо от значения напряжения измеряемой цепи.
Схема включения вольтметра с трансформатором напряжения изображена на рис.1. Трансформатор напряжения устроен так же, как и обычный трансформатор. Для него справедливы соотношения
U1 ? E1 = w1 = KU, откуда U2 ? U1 w2
U2 E2 w2 w1


Рис. 1. Схема включения вольтметра с трансформатором напряжения

Если трансформатор напряжения выполнен как обычный трансформатор, то возникают значительные погрешности измерения из-за того, что U1 ? E1 и U2 ? Е2 по причине падения напряжения в его обмотках. Для повышения точности измерения необходимо уменьшить падение напряжения в обмотках трансформатора.
Достигается это следующим образом. К вторичной обмотке трансформатора напряжения подключаются обмотки вольтметров, обмотки напряжения ваттметров и счетчиков, обмотки реле защиты. Указанные обмотки обладают значительными сопротивлениями, и если их количество ограничено, то трансформатор работает практически в режиме холостого хода. Падение напряжения во вторичной обмотке столь мало, что U2 = Е2. Так как I2 ? 0, падение напряжения в первичной обмотке обусловлено только током холостого хода
I10 = ?Ip2 + Ia2.
Таким образом, повышение точности измерений сводится к уменьшению тока холостого хода трансформатора.
Реактивная составляющая тока холостого хода Iр определяется из уравне-ния Ipw1 = Hстlст + H0l0. Ее уменьшение достигается тем, что магнитопровод выполняется из высококачественной электротехнической стали с высокой магнитной проницаемостью ?аст . Кроме того, трансформатор рассчитывается для работы с малым значением амплитуды магнитной индукции Вm — около 0,4 — 0,8 Тл. Все это существенно снижает напряженность магнитного поля в стали Нст = В/?аст и в воздушном зазоре Н0 = В/?0 магнитопровода и, естественно, снижает реактивную составляющую тока холостого хода. С той же целью магнитопровод трансформатора выполняется с минимальным значением воздушного зазора, что достигается высококачественной обработкой пластин и сборкой магнитопровода. Активная составляющая Iа обусловлена потерями в стали магнитопровода. Ее уменьшение достигается тем, что для магнитопровода используется сталь с малыми значениями удельных потерь ?P10, ?P15 и, как уже было сказано, трансформатор работает при малых значениях Вm .
При выполнении указанных выше условий вторичное напряжение транс-форматора пропорционально первичному.
Однако абсолютной точности получить невозможно, и трансформаторы напряжения имеют определенную погрешность, так же как и измерительные приборы. По точности измерений трансформаторы делятся на классы точности: 0,2; 0,5; 1 и 3.
Трансформаторы напряжения бывают однофазные и трехфазные. На паспорте трансформатора указываются номинальная мощность, номинальное первичное U1ном и вторичное U2ном напряжения, класс точности. Вторичное напряжение (у трехфазных линейное) всех трансформаторов 100 В. Начало первичной обмотки обозначено буквой А, конец — X, начало — вторичной а, конец — х.
Схема включения амперметра с трансформатором тока изображена на рис. 2в. Первичная обмотка трансформатора включена в электрическую цепь, и ток в ней определяется сопротивлением приемников и, естественно, не зависит от тока во вторичной цепи, где включен амперметр. Обмотка имеет несколько витков и выполнена из провода значительного сечения (соответственно току цепи). К выводам вторичной обмотки, имеющей значительно большее количество витков, чем первичная, и рассчитанной на ток 5 А, подключаются последовательно обмотки амперметра, токовые обмотки ваттметра, счетчика, реле защиты. Сопротивление обмоток незначительное, и если их количество невелико, то трансформатор работает в режиме короткого замыкания. Из уравнения МДС
I1w1 + I2w2 = I10w1
следует, что если бы намагничивающий ток I10 был равен нулю, то
I1w1 = I2w2 и I2 = I1 w1 = I1KI .
w2


Рис. 2. Трансформатор тока (а), обозначение трансформатора тока (б), схема включения амперметра с трансформатором тока (в)

Так как трансформатор тока работает в режиме короткого замыкания, то для создания тока во вторичной цепи 5 А требуется небольшая ЭДС и, следовательно, небольшой магнитный поток и создающий его намагничивающий ток. Однако для повышения точности измерения принимаются дополнительные меры к его снижению. Эти меры аналогичны тем, что были рассмотрены применительно к трансформатору напряжения, но в этом случае достаточная точность измерений при выполнении рассмотренных выше мер получается, если амплитуда магнитной индукции для трансформатора тока выбирается в пределах 0,06 — 0,1 Тл.
Необходимо отметить, что точность измерений существенно снижается при возрастании сопротивления вторичной цепи трансформатора. Действительно, для создания того же тока во вторичной обмотке потребуются большие ЭДС и, следовательно, магнитный поток и намагничивающий ток. Возросший намагничивающий ток нарушит пропорциональность между первичным и вторичным токами. Обрыв вторичной цепи представляет серьезную опасность для обслуживающего персонала вследствие появления на вторичной обмотке большого напряжения и возможности выхода из строя трансформатора.

Рис. 3. К пояснению работы трансформатора тока при разомкнутой вторичной обмотке

Это объясняется тем, что МДС первичной обмотки определяется током приемников энергии и не зависит от того, замкнута или разомкнута вторичная обмотка. Когда вторичная обмотка замкнута, она создает МДС I2w2, направленную против I1w1, и результирующая МДС, которая практически равна их разности, будет создавать магнитную индукцию всего в 0,06 — 0,1 Тл (точка а, рис. 3). При разомкнутой вторичной обмотке (I2w2 = 0) магнитная индукция возрастает до значений 1,5 — 2,0 Тл, что соответствует точке б. Магнитная индукция возрастает в 10 — 20 раз, что приведет к появлению большого напряжения на вторичной обмотке и резкому возрастанию (в 100 — 400 раз) потерь в магнитопроводе. Для предотвращения отмеченных неприятностей, перед тем как отсоединить на ремонт или проверку измерительный прибор, вторичную обмотку трансформатора тока необходимо замкнуть накоротко перемычкой.
В паспорте трансформатора тока указываются номинальные токи пер-вичной I1ном и вторичной I2ном (он обычно 5 А) обмоток, класс точности, максимальное значение сопротивления и минимальное значение коэффициента мощности обмоток приборов, включаемых во вторичную обмотку, при которых гарантируется указанный класс точности, а также напряжение, на которое рассчитана его изоляция. Начало первичной обмотки трансформатора тока обозначается буквой Л1, конец — буквой Л2, вторичной: начало — И1, конец — И2.
Необходимо отметить, что кроме погрешности измерения по коэффициенту трансформации (по модулю измеряемой величины) есть и погрешность по углу по той же причине: падение напряжения в обмотках. Погрешность объясняется тем, что направление вектора приведенного вторичного напряжения не совпадает с направлением вектора первичного напряжения трансформатора напряжения и направление вектора приведенного тока вторичной обмотки не совпадает с направлением вектора первичного тока трансформатора. Угловая погрешность составляет всего несколько минут и проявляет себя только при измерении мощности, энергии и фазы.


Рис 4. Схема включения амперметра, вольтметра, ваттметра с трансформаторами напряжения и тока

На рис. 4 изображена схема включения измерительных приборов и изме-рительных трансформаторов для измерения тока, напряжения и активной мощности. Для защиты обслуживающего персонала от действия высокого напряжения в случае пробоя изоляции между обмотками или высоковольтной обмоткой и корпусом корпус и один конец вторичной обмотки измерительных трансформаторов надежно заземляются. Цена деления измерительных приборов определяется следующим образом.
Необходимо отметить, что при определении цены деления измерительных приборов под коэффициентом трансформации измерительных трансформато-ров понимают отношения:
для трансформатора напряжения — номинальных значений напряжений первичной и вторичной обмоток
КU = U1н = w1 = n;
U2н w2
для трансформатора тока — номинальных значений токов первичной и вторичной обмоток
kI = I1н = w2 = 1
I2н w1 n
Цена деления амперметра
С’A = CAkI = CA w2 = CA I1н .
w1 I2н
где СА — цена деления амперметра; С’A — цена деления амперметра с транс-форматором тока.
Цена деления вольтметра
С’B = СBkU = СB w1 = CB U1н .
w2 U2н
где СB — цена деления вольтметра; С’B — цена деления вольтметра с транс-форматором напряжения.
Цена деления ваттметра
С’Вт = СВтkIkU = СВт I1н U1н
I2н U2н
где СВт — цена деления ваттметра; С’Вт — цена деления ваттметра с трансфор-маторами тока и напряжения.

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5 (1 оценок, среднее: 5,00 из 5)
Загрузка...




Похожие статьи





Добавить комментарий

Рекомендуем

Заказать новую работу