Ударная волна и световое излучение



С макроскопической точки зрения ударная волна представляет собой воображаемую поверхность, на которой термодинамические величины среды (которые, как правило, изменяются в пространстве непрерывно) испытывают устранимые особенности: конечные скачки. При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной-единственной характеристикой ударной волны, числом Маха. Математическое уравнение, связывающее термодинамические величины до и после прохождения ударной волны, называется ударной адиабатой, или адиабатой Гюгонио.
Ударные волны не обладают свойством аддитивности в том смысле, что термодинамическое состояние среды, возникающее после прохождения одной ударной волной нельзя получить последовательным пропусканием двух ударных волн меньшей интенсивности.
Происхождение ударных волн
Звук представляет собой колебания плотности среды, распространяю-щиеся в пространстве. Уравнение состояния обычных сред таково, что в области повышенного давления скорость звука (то есть скорость распространения возмущений) возрастает (то есть звук является нелинейной волной). Это неизбежно приводит к явлению опрокидывания решений, которые и порождают ударные волны.
В силу этого механизма, ударная волна в обычной среде — это всегда волна сжатия. Однако в тех системах, в которых скорость распростране-ния возмущений уменьшается с ростом плотности, будет наблюдаться ударная волна разрежения.
Описанный механизм предсказывает неизбежное превращение любой звуковой волны в слабую ударную волну. Однако в повседневных условиях для этого требуется слишком большое время, так что звуковая волна успевает затухнуть раньше, чем нелинейности становятся заметны. Для быстрого превращения колебания плотности в ударную волну требуются сильные начальные отклонения от равновесия. Этого можно добиться либо созданием звуковой волны очень большой громкости, либо механически, путём околозвукового движения объектов в среде. Именно поэтому ударные волны легко возникают при взрывах, при около- и сверхзвуковых движениях тел, при мощных электрических разрядах и т. д.
Микроскопическая структура ударной волны
Ширина ударных волн большой интенсивности имеет величину порядка длины свободного пробега молекул газа (более точно — ~10 длин свободного пробега, и не может быть менее 2 длин свободного пробега; данный результат получен Чепменом в начале 1950-х). Так как в макроскопической газодинамике длина свободного пробега должна рассматриваться равной нулю, чисто газодинамические методы непригодны для исследований внутренней структуры ударных волн большой интенсивности.
Для теоретического изучения микроскопической структуры ударных волн применяется кинетическая теория. Аналитически задача о структуре ударной волны не решается, но применяется ряд упрощённых моделей.
Скорость распространения ударной волны
Скорость распространения ударной волны в среде превышает скорость звука в данной среде. Превышение тем больше, чем выше интенсивность ударной волны. Например, недалеко от центра ядерного взрыва скорость распространения ударной волны во много раз выше скорости звука. При удалении с ослаблением ударной волны, скорость её быстро снижается и на большой дистанции ударная волна вырождается в звуковую (акустическую) волну, а скорость её распространения приближается к скорости звука в окружающей среде. Ударная волна в воздухе при ядерном взрыве мощностью 20 килотонн проходит дистанции: 1000 м за 1,4 с, 2000 м — 4 с, 3000 м — 7 с, 5000 м — 12 с. Поэтому у человека, увидевшего вспышку взрыва, есть какое-то время для укрытия (складки местности, канавы и пр.) и тем самым уменьшения поражающего воздействия ударной волны.
Ударные волны в твёрдых телах (например, вызванные ядерным или обычным взрывом в скальной породе, ударом метеорита или кумулятивной струёй) при тех же скоростях имеют значительно бо`льшие давления и температуры. Твёрдое вещество за фронтом ударной волны ведёт себя как идеальная сжимаемая жидкость, то есть в нём как бы отсутствуют межмолекулярные и межатомные связи, и прочность вещества не оказывает на волну никакого воздействия. В случае наземного и подземного ядерного взрыва ударная волна в грунте не может рассматриваться, как поражающий фактор, так как она быстро затухает; радиус её распространения невелик и будет целиком в пределах размеров взрывной воронки, внутри которой и без того достигается полное поражение прочных подземных целей.
Световое излучение — один из поражающих факторов при взрыве ядерного боеприпаса, представляющий собой тепловое излучение от светящейся области взрыва. В зависимости от мощности боеприпаса, время действия колеблется от долей секунды до нескольких десятков секунд. Вызывает у людей и животных ожоги различной степени и ослепление; оплавление, обугливание и возгорание различных материалов.
Механизм формирования
Световое излучение представляет собой тепловое излучение, испускае-мое нагретыми до высокой температуры (~107 К) продуктами ядерного взрыва. Вследствие большой плотности вещества поглощательная способность огненного шара оказывается близка к 1, поэтому спектр светового излучения ядерного взрыва достаточно близок к спектру абсолютно черного тела. В спектре преобладает ультрафиолетовое и рентгеновское излучения.
Защита гражданского населения
Особую опасность световое излучение представляет по той причине, что действует непосредственно во время взрыва и времени на укрытие в убежищах у людей нет.
От светового излучения могут защитить любые непрозрачные объекты — стены домов, автомобильная и прочая техника, крутые склоны оврагов и холмов. Защитить может даже плотная одежда — но в этом случае возможно её возгорание.
В случае начала ядерного взрыва следует незамедлительно укрыться в любой тени от вспышки или, если укрыться негде, лечь спиной вверх, ногами к взрыву и закрыть лицо руками — это поможет в какой-то степени уменьшить ожоги и травмы. Нельзя смотреть на вспышку ядерного взрыва и даже поворачивать к ней голову, так как это может привести к тяжёлым поражениям органов зрения, вплоть до полной слепоты.





Похожие статьи





Добавить комментарий

Рекомендуем

Заказать новую работу