Диод характеристика и применение. Работа полупроводникового диода. Применение диода.

Диодами называют двухэлектродные элементы электрической цепи, обладающие односторонней проводимостью тока. В полупроводниковых диодах односторонняя проводимость обуславливается применением полупроводниковой структуры, сочетающей в себе два слоя, один из которых обладает дырочной (p), а другой – электронной (n) электропроводностью. Обозначение диода на электронных схемах представлено на рис 4.
Изображение диода на схемах
Рис. 4 Изображение диода на схемах
Принцип действия полупроводникового диода основывается на специфике процессов, протекающих на границе раздела p- и n-слоев, в так называемом электронно-дырочном переходе. Электронно-дырочный переход обладает нессиметричной проводимостью, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов основана на свойствах одного или нескольких p-n-переходов.
Электронно-дырочный переход при отсутствии внешнего напряжения
Рис. 5 Электронно-дырочный переход при отсутствии внешнего напряжения
Допустим, внешнее напряжение на переходе отсутствует. Так как носители заряда в каждом полупроводнике совершают беспорядочное тепловое движение, т. е. имеют собственные скорости, то происходит их диффузия из одного полупроводника в другой. Как и при любой другой диффузии носители перемещаются оттуда, где их концентрация больше, туда, где их концентрация меньше. Таким образом, из полупроводника n-типа в полупроводник p-типа диффундируют электроны, а в обратном направлении — дырки. Соответственно, на рисунке 1 светлые кружки со стрелками дырки, темные — электроны. Кружки побольше обозначают атомы акцепторной и донорной примеси, соответственно заряженные отрицательно и положительно.
В результате диффузии носителей по обе стороны границы раздела двух полупроводников с различным типом электропроводности создаются объемные заряды обоих знаков. В области n создается положительный объемный заряд. Он образован главным образом положительно заряженными атомами донорной примеси и в небольшой степени — пришедшими в эту область дырками. Аналогично в области p.
Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов uk= ?n — ?p и электрическое поле (вектор напряженности Ek). На том же рисунке изображена потенциальная диаграмма. На этой диаграмме, показывающей распределение потенциала вдоль оси x, перпендикулярной плоскости раздела двух полупроводников, за нулевой потенциал принят потенциал граничного слоя.
Следует отметить, что объемные заряды возникают вблизи границы n- и p-областей, а положительный потенциал ?n или отрицательный потенциал ?p создается одинаковым по всей области n или p. Если бы в различных частях области потенциал был различным, т. е. была бы разность потенциалов, то возник бы ток, в результате которого все равно произошло бы выравнивание потенциала в данной области.
Как видно, в p-n-переходе возникает потенциальный барьер, препятствующий диффузионному переходу носителей. На рис. 5 изображен барьер для электронов, стремящихся за счет диффузии перемещаться слева направо (из области n в область p).
Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. Чем больше концентрация примесей, тем выше концентрация основных носителей и тем большее число их диффундирует через границу. Плотность объемных зарядов возрастает, и увеличивается контактная разность потенциалов uk, т. е. высота потенциального барьера. При этом толщина p-n-перехода d уменьшается, так как соответствующие заряды образуются в приграничных слоях меньшей толщины.
Одновременно с диффузионным перемещением основных носителей через границу происходит и обратное перемещение носителей под действием электрического поля контактной разности потенциалов. Это поле перемещает дырки из n-области обратно в p-область и аналогично электроны из p-области обратно в n-область. При постоянной температуре p-n-переход находится в состоянии динамического равновесия. Ежесекундно через границу в противоположных направлениях перемещаются электроны и дырки, а под действием поля столько же их дрейфует в обратном направлении.
Полный ток через переход при динамическом равновесии равен нулю, так как диффузионный ток и ток дрейфа компенсируют друг друга. Если диффузионный ток возрастет, то через переход будет диффундировать больше носителей. Это вызовет увеличение объемных зарядов и потенциала по обе стороны границы. Значение uk возрастет, т. е. усилится электрическое поле в переходе и повысится потенциальный барьер. Но усиление поля вызовет соответствующее увеличение тока дрейфа, т. е. обратного перемещения носителей. Пока диффузионный ток больше тока дрейфа высота барьера растет, но в конце концов за счет увеличения тока дрейфа наступит равенство токов и дальнейшее повышения барьера прекратится.
Таким образом, в p-n-переходе возникает слой, называемый запирающим и обладающий большим сопротивлением по сравнению с сопротивлением остальных объемов n- и p-полупроводников.
Электронно-дырочный переход при прямом напряжении

Рис. 6 Электронно-дырочный переход при прямом напряжении
Электрическое поле, создаваемое в p-n-переходе прямым напряжением, действует навстречу полю контактной разности потенциалов. Это показано на рисунке векторами Eк и Eпр. Результирующее поле становится слабее, и разность потенциалов в переходе уменьшается, т. е. высота потенциального барьера понижается, возрастает диффузионный ток, так как большее число носителей может преодолеть пониженный барьер. Ток дрейфа при этом почти не изменяется, т. к. он зависит главным образом от числа неосновных носителей, попадающих за счет своих тепловых скоростей на p-n-переход из p- и n-областей. Если пренебречь падением напряжения на сопротивлении областей n и p, то напряжение на переходе можно считать равным uк — uпр. Для сравнения на рис. 6 штриховой линией показана потенциальная диаграмма при отсутствии внешнего напряжения.
Как известно, в этом случае ток дрейфа и диффузионный ток компенсируют друг друга. При прямом напряжении диффузионный ток становится больше тока дрейфа и поэтому полный ток через переход , т. е. прямой ток, уже не равен нулю.
Если барьер значительно понижен, то iдиф>>iдр и можно считать, что iпр?iдиф, т. е. прямой ток в переходе является чисто диффузионным.
При прямом напряжении не только уменьшается потенциальный барьер, но уменьшается толщина запирающего слоя (dпрЭлектронно-дырочный переход при обратном напряжении
Рис. 7 Электронно-дырочный переход при обратном напряжении
Под действием обратного напряжения uобр через переход протекает очень небольшой обратный ток iобр, что объясняется следующим образом. Поле, создаваемое обратным напряжением, складывается с полем контактной разности потенциалов. На рис. 4 это показывают одинаковые направления векторов Eк и Eобр. Результирующее поле усиливается, и высота потенциального барьера теперь равна uк+uобр. Уже при небольшом повышении барьера диффузионное перемещение основных носителей через переход прекращается, т. е. iдиф=0, т. к. собственные скорости носителей недостаточны для преодоление барьера. А ток проводимости остается практически неизменным, поскольку он определяется главным образом число неосновных носителей, попадающих на p-n-переход из n- и p-областей.
Таким образом, обратный ток iобр представляет собой ток проводимости, вызванный перемещением неосновных носителей. Обратный ток получается очень небольшим, так как неосновных носителей мало и, кроме того, сопротивление запирающего слоя при обратном напряжении очень велико. Действительно, при повышении обратного напряжения поле в месте перехода становится сильнее и под действием этого поля больше основных носителей «выталкивается» из пограничных слоев вглубь из n- и p-областей. Поэтому с увеличением обратного напряжения увеличивается не только высота потенциального барьера, но и толщина запирающего слоя (dобр>Rпр.
Уже при сравнительно небольшом обратном напряжении обратный ток становится практически постоянным. Это связано с тем, что число неосновных носителей ограничено. С повышением температуры концентрация их возрастает и обратный ток увеличивается, а обратное сопротивление уменьшается.
Посмотрим, как устанавливается обратный ток при включении обратного напряжения. Сначала возникает переходный процесс, связанный с движением основных носителей. Электроны в n-области движутся по направлению к положительному полюсу источника, т. е. удаляются от p-n-перехода. А в p-области, удаляясь от перехода, движутся дырки. У отрицательного электрода они рекомбинируют с электронами, которые приходят из проводника, соединяющего этот электрод с отрицательным полюсом источника.
Поскольку из n-области уходят электроны, она заряжается положительно, так как в ней остаются положительно заряженные атомы донорной примеси. Подобно этому p-область заряжается отрицательно, т. к. дырки заполняются пришедшими электронами и в ней остаются отрицательно заряженные атомы акцепторной примеси. Рассмотренное движение основных носителей в противоположные стороны продолжается лишь малый промежуток времени. По обе стороны p-n-перехода возникают два разноименных объемных заряда, и вся система становится аналогичной заряженному конденсатору с диэлектриком, в котором имеется значительный ток утечки (его роль играет обратный ток). Но ток утечки конденсатора в соответствии с законом Ома пропорционален приложенному напряжению, а обратный ток p-n-перехода сравнительно мало зависит от напряжения.
В зависимости от структуры различают точечные и плоскостные диоды.
У точечных диодов линейные размеры, определяющие площадь p-n-перехода, такие же, как толщина перехода, или меньше ее. У плоскостных диодов эти размеры значительно больше толщины перехода.
Точечные диоды имеют малую емкость перехода (обычно менее 1 пФ) и поэтому применяются на любых частотах, вплоть до СВЧ. Но они могут пропускать токи не более единиц или десятков миллиампер. Плоскостные диоды в зависимости от площади перехода обладают емкостью в десятки пикофарад и, соответственно, их применяют на частотах не выше десятков килогерц, а допустимый ток бывает до сотен ампер. На рисунке представлена конструкция точечных и плоскостных диодов.

Принцип устройства точечного диода
Рис. 8 Принцип устройства точечного диода

Принцип устройства плоскостных германиевых диодов
Рис. 9 Принцип устройства плоскостных германиевых диодов, изготовленных сплавным (а) и диффузионным методом(б)
Диоды бывают различного назначения.
Выпрямительные диоды. Как видно из названия их основное предназначение — выпрямление переменного тока (напряжения). Процесс этот весьма важен в радиоэлектронике, поскольку питание практически всех устройств осуществляется постоянным напряжением. Для переменного напряжения характерно изменение полярности с плюса на минус во времени по определенному закону. Рассмотрим выпрямление переменного тока упрощенно.
Наглядно это показано на рисунке (начальная фаза равна нулю).
Обобщенный вид переменного напряжения

Рис. 9 Обобщенный вид переменного напряжения
Поскольку диод обладает однонаправленными свойствами, т. е. пропускает ток только в одном направлении, соответственно, положительные полуволны входного напряжения будут проходить через диод, отрицательные — нет. В данном случае при отрицательной полуволне диод оказывается включенным при обратном напряжении. Весь процесс выглядит примерно так:
Процесс выпрямления напряжения

Рис. 10 Процесс выпрямления напряжения
На второй части графика небольшое отрицательное напряжение есть не что иное, как воздействие обратного тока, но этим можно пренебречь. Таким образом, на нагрузке выделяются только положительные полуволны входного переменного напряжения. Соответственно, задача выпрямителя состоит в преобразовании переменного напряжения в однонаправленное пульсирующее. Самая простая схема выглядит так:

 Простейшая схема выпрямителя
Рис. 11 Простейшая схема выпрямителя
Для того, чтобы на нагрузке не было таких пульсаций, параллельно резистору ставят конденсатор большой емкости. Потом стабилизатор и так далее. Об этом потом.
Широко распространены низкочастотные выпрямительные диоды, предназначенные для работы на частотах до нескольких килогерц. НЧ диоды являются плоскостными, изготавливаются из германия или кремния и делятся на диоды малой, средней и большой мощности.
Для выпрямления высоких напряжений, например, несколько киловольт, выпускают кремниевые столбы в прямоугольных пластмассовых корпусах, залитых изолирующей смолой. Эти диоды рассчитаны на обратное напряжение в несколько киловольт и ток в несколько миллиампер. Вообще же, главной характеристикой выпрямительных диодов является допустимое обратное напряжение, поскольку, как было указано выше, отрицательные полуволны переменного напряжения являются для диода обратным напряжением, поэтому, если неправильно подобрать диод по обратному напряжению, может возникнуть пробой и диод выйдет из строя.
Выпрямительные точечные диоды широко применяются на высоких частотах, иногда на СВЧ, хотя успешно работают на низких частотах. Эти диоды работают во многих устройствах, поэтому их называют еще универсальными. Естественно, для таких диодов характерен небольшой прямой ток, в отличие от плоскостных (всего до сотен миллиампер).
Импульсные диоды. При работе диода в импульсном режиме для него характерны некоторые особенности. Ну, например, диод включен в цепь импульсного напряжения с длительностью импульсов в несколько микросекунд. Положительные импульсы проходят через диод, при этом прямым сопротивлением диода мы пренебрегаем. Когда полярность напряжения на диоде меняется на противоположную, диод закрывается не сразу, а в течении некоторого времени, за которое через переход протекает обратный ток, значительно превосходящий по амплитуде обратный ток в установившемся режиме. Основной причиной возникновения обратного тока является разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в p- и n-областях. Поскольку концентрации примесей в этих областях весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью.
Стабилитроны. При рассмотрении вольт-амперной характеристики полупроводникового диода видно, что в области электрического пробоя имеется участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, в данном случае в режиме стабилизации, он становится такого же порядка, как и прямой ток. Стабилитроны изготавливаются исключительно из кремния, их также еще называют опорными диодами, т. к. в ряде случаев получаемое от них стабильное напряжение используется в качестве опорного. На рисунке показана ВАХ стабилитрона.

Вольт-амперная характеристика стабилитрона
Рис. 12 Вольт-амперная характеристика стабилитрона
Из рисунка видно, что при обратном токе напряжение стабилизации меняется незначительно. Стабилитрон работает при обратном напряжении. Принцип работы поясняет простейшая схема включения стабилитрона. Эта схема называется параметрическим стабилизатором напряжения и несмотря на свою простоту используется довольно широко. Такая схема позволяет получить ток в нагрузке в несколько миллиампер.
Схема включения стабилитрона

Рис. 13 Схема включения стабилитрона
Нагрузка включена параллельно стабилитрону, поэтому в режиме стабилизации, когда напряжение на стабилитроне постоянно, такое же напряжение будет и на нагрузке. Все изменение входного напряжения будет поглощаться резистором Rогр, которое еще называют балластным. Если входное напряжение будет изменяться, то будет изменяться ток стабилитрона, но напряжение на нем, следовательно и на нагрузке, будет оставаться постоянным.
Следует отметить, что если имеют место пульсации входного напряжения, то стабилитрон неплохо сглаживает их. Это объясняется тем, что стабилитрон обладает малым сопротивлением переменному току.
Стабисторы. Это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов — отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН.
Варикапы. Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Другими словами, варикап — это конденсатор переменной емкости, управляемый не механически, а электрически.
Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специальных схемах, например, в так называемых параметрических усилителях. Вот простейшая схемка включения варикапа в колебательный контур:

Схема включения варикапа в колебательный контур
Рис. 14 Схема включения варикапа в колебательный контур
Изменяя с помощью потенциометра R обратное напряжение на варикапе, можно менять резонансную частоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Cр является разделительным. Без него варикап был бы для постоянного напряжения замкнут накоротко катушкой L.
В качестве варикапов можно использовать стабилитроны с напряжением ниже напряжения стабилизации, когда обратный ток еще очень мал, а обратное сопротивление очень велико.
Мы рассмотрели основные типы полупроводниковых диодов. Существуют еще и туннельные диоды, диоды Ганна, фотодиоды и пр.





Похожие статьи






There is no ads to display, Please add some

Добавить комментарий

Реклама