Заказать расчетно-графическое задание Расчет полярной диаграммы дальности действия гидролокатора горизонтального действия

Помощь в написании РЗГ по дисциплине гидроакустические приборы и системы для курсантов и студентов морских учебных заведений. Выполним расчетно-графическое задание за 3 дня.

Исходные данные для расчета эксплуатационных параметров гидролокатора горизонтального действия
L, м Рэ, кВт эа, % f0, кГц f, кГц , мс а, см b, см
3.0 30 26 1.2 10 12.0 16.0

Исходные данные для расчета акустического сечения обратного рассеяния
Косяк рыбы Rэ = 0.25 м э = 1 мс
uk, В uэ, В rk, м rэ, м
24.3 6.8 100 100

Интенсивность шумовой помехи
Iш =5.573229  10-10 Вт/м2

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ВЕЛИЧИН
Рэ – электрическая мощность генератора, Вт
эа – электроакустический КПД антенны,
fo – рабочая частота, Гц
 f – полоса пропускания частот приемника, Гц
 — длительность зондирующего импульса, мс
a – размер прямоугольной антенны (длина), см
b – размер прямоугольной антенны (ширина), см
с – скорость звука в воде, м/с

1. Расчет энергетической дальности действия.
1.1. Теоретическое введение
Одним из основных тактических параметров гидролокатора является максимальная дальность действия, которая подразделяется на энергетическую и геометрическую.
Энергетическая дальность действия (ЭДД) — это максимальное расстояние (rmax) от гидроакустической антенны до обнаруженного объекта, при котором полезный эхосигнал может быть выделен в регистрирующих приборах на фоне помех (реверберация, шумы моря, шумовое поле движущегося судна и т.д.). Свойства акустических волн и среды, в которой они распространяются, оказывают значительное влияние на дальность действия гидроакустических приборов. Следует иметь в виду, что объекты, от которых отражаются акустические волны, могут иметь различные размеры, акустические свойства, структуру и т.д., что также влияет на дальность действия. Существует не¬сколько зависимостей для определения ЭДД гидролокатора. Довольно часто используется зависимость вида:

где:
rmax — энергетическая дальность действия, км
β — коэффициент затухания звука в море ДБ/КМ
Ра — излучаемая акустическая мощность, Вт
γ — коэффициент осевой концентрации
σ — площадь акустического поперечного сечения обратного рассеяния от подводного объекта, м2
δ — коэффициент распознавания
ІП — интенсивность помех рыболокации, Вт/м2
Для определения ЭДД гидролокатора необходимо предварительно рассчитать следующие параметры:
-излучаемую акустическую мощность (Ра)
-коэффициент осевой концентрации антенны (γ )
-коэффициент затухания звука в море ( β )
-коэффициент распознавания ( δ )
-площадь акустического поперечного сечения обратного рассеяния от подводного объекта (σ}
-энергетическую дальность действия, в условиях помех
1.2. Расчет излучаемой акустической мощности
(Вт)
где
Рэ – электрическая мощность генератора, Вт
эа – электроакустический КПД антенны, относит. ед.
Ра = 3000  0.30 =900 Вт
1.3. Расчет коэффициента осевой концентрации прямоугольной антенны

где
s – площадь излучающей поверхности антенны, м2
a, b – геометрические размеры излучающей поверхности прямоугольной антенны, м
fo – рабочая частота излучения, Гц
c – скорость распространения звука в воде, м/с
 — длина волны излучения, м

1.4. Расчет коэффициента затухания

где
fo – рабочая частота излучения, кГц

1.5. Расчет коэффициента распознавания

где
kб – коэффициент надежности приема (или пороговый коэффициент равный отношению напряжений сигнал/помеха) (k  1,5)
f – ширина полосы частот пропускания приемника, Гц
 — длительность зондирующего импульса, с

1.6. Расчет акустического поперечного сечения обратного рассеяния объекта (косяка)
, м2
где
Rэ – радиус эквивалентной сферы, м
uk – напряжение на входе приемника от отраженного сигнала косяка рыбы, В
uэ – напряжение на входе приемника от отраженного сигнала эквивалентной сферы, В
rk – расстояние до косяка рыбы, м
rэ – расстояние до эквивалентной сферы, м
э – длительность зондирующего импульса, при которой «измерялось» акустическое поперечное сечение обратного рассеяния косяка, с
 — длительность зондирующего импульса, с
э – площадь поперечного сечения обратного рассеяния эквивалентной сферы, м

1.7. Расчет энергетической дальности действия гидролокатора в условиях шумовой помехи (1-й способ – с помощью трансцендентного уравнения. Решение графическое).
Исходное уравнение энергетической дальности действия:
, км
Pa – акустическая мощность, Вт
 — коэффициент затухания звука в море, ДБ/км
 — коэффициент осевой концентрации
к – площадь акустического поперечного сечения обратного рассеяния объекта, м2
δ — коэффициент распознавания
IШ – интенсивность шумовой помехи, Вт/м2
Умножением левой и правой частей значения на 0,05 приводим его к виду

где М – постоянная величина (правая часть уравнения)

Расчет правой части трансцендентного уравнения

где Ра – акустическая мощность гидролокатора, 900 Вт
 — коэффициент осевой концентрации, 71.69
к – акустическое поперечное сечение обратного рассеяния косяка рыбы, 7.93 м2
δ — коэффициент распознавания, 0.6124
Iш – интенсивность шумовой помехи, 5.573229  10-10 Вт/м2

Используя приложение 4, по величине Мк = 0.630 находим Хмк=0.309 дБ
Тогда энергетическая дальность действия в условиях шумовой помехи для косяка рыбы

2. Полярная диаграмма дальности действия.
2.1.1. Теоретическое введение
Для того, чтобы эффективно использовать возможности гидролокаторов при поиске объектов промысла, важно иметь представление о величине зоны, просматриваемой прибором, т.е. знать дальность обнаружения объекта не только по направлению основного максимума, но и по другим направлениям в пределах действующего угла диаграммы направленности антенны. Ясно, что по этим другим направлениям дальность действия гидролокатора будет меньше, чем по осевому направлению. Если от места расположения антенны откладывать по со¬ответствующим направлениям дальность обнаружения одного и того же объекта, то получим диаграмму, называемую полярной диаграммой дальности действия (ДДК). Полярная ДДД, таким образом, есть геометрическое место точек, отображающих положение обнаруженного объекта при условии, что величина эхо-сигнала от него в указанных точках имеет одно и то же минимально необходимое для обнаружения значение.
Полярная ДДД определяется, прежде всего, направленностью действия антенны, а также акустическими (отрицательными) свойствами объекта и чувствительностью гидролокатора – минимальной интенсивностью эхо-сигнала, который может быть зарегистрирован гидролокатором. В связи с этим полярная ДДД как бы обобщает свойства гидролокатора и объекта, полнее описывает поисковые качества гидролокатора.

2.1.2. Расчет полярной диаграммы дальности, действия.

Ширина ДМ антенны на нулевом уровне
, км
где
R () – характеристика направленности антенны в горизонтальной плоскости.
rо – дальность действия гидролокатора по осевому направлению при отсутствии затухания (с учетом влияния шумовой помехи), м, 1296 м

Где

можно определить с учетом волнового размера по формуле.

Где
l/=0.14/0.058=2.41 — волновой размер

— полусумма сторон (длины и ширины) антенны гидролокатора, м
 — длина волны зондирующего импульса, м
Ширина ДН на нулевом уровне определяется

где
a – размер антенны в горизонтальной плоскости, м.
Т.к. о = 21.13° > 10°, то углы  для построения полярной DDD будут задаваться с дискретностью 5°.

Для определения параметров r () следует воспользоваться приложением 4

По M() определяются значения x(), а по ним рассчитываются значения r()
, км
Результаты расчетов заносятся в таблицу 1.
Таблица 1. Значения величин r() в горизонтальной плоскости
, град 0 5 10 15 20 25
R () 1 0,929 0,736 0,473 0,203 -0,018
roR(), км 1,296 1,204 0,954 0,613 0,263 -0,023
М (), дБ 0,309 0,287 0,228 0,146 0,063 -0,005
хм(), дБ 0,197 0,187 0,158 0,113 0,056 0,005
r(), км 0,826 0,784 0,662 0,474 0,235 0,021

Полярная диаграмма дальности действия гидролокатора, построенная по данным таблицы 1, приведена на рисунке 1.

Добавить комментарий

Реклама

Помощь студентам