Источники света. Световые величины.

С физической точки зрения источником света может быть названа любая материальная система, излучающая электромагнитную энергию в оптической области спектра. В технике источниками света называют приборы, служащие для преобразования какого-либо вида энергии в энергию оптического излучения.
Источники света могут быть как естественными (светящие небесные тела, молния и др.), так и искусственными (свеча, электрическая лампа и др.). В современных искусственных источниках света для преобразования в свет используется преимущественно электрическая энергия. Такие источники света называются электрическими.
Электрические источники света можно классифицировать (разделить на классы, группы) по многим признакам, однако главными из них являются: механизм генерирования света (вид излучения); назначение (область применения); конструктивно-технологические особенности.
По первому признаку (вид излучения) электрические источники света делятся на три больших класса:
■Тепловые
■Люминесцентные
■Смешанного излучения.
К тепловым электрическим источникам оптического излучения относятся прежде всего разнообразные лампы накаливания, в которых свет излучается проводником (вольфрамовым телом накала), накаленным протекающим через него электрическим током. К этому классу можно также отнести: электрические дуги между угольными электродами, основным источником излучения которых является поверхность электрода; газокалильные лампы, в которых излучают сетки, накаленные внешней теплотой; электрические инфракрасные излучатели.
К люминесцентным источникам света относятся такие источники, свечение которых основано на явлении люминесценции. Люминесценция не подчиняется законам теплового излучения. В основе ее лежит индивидуализированный перевод атомов и молекул вещества в возбужденное состояние, возвращаясь из которого в нормальное состояние, они излучают накопленную энергию в виде света. В зависимости от рода применяемой первичной (возбуждающей) энергию люминесценция делится на различные виды: электролюминесценция! (свечение веществ под действием электрического поля), фотолюминесценция (свечение веществ при облучении их светом), хемилюминесценция (свечение в результате химической реакции) и др.

Типичными представителями люминесцентных источников света являются трубчатые люминесцентные лампы низкого давления, а также дуговые ртутные лампы типа ДРЛ, в которых одновременно с электролюминесценцией паров ртути в плазме электрического разряда используется фотолюминесценция нанесенного на стенку колбы люминофора под действием излучения столба разряда. К этому же классу относятся различные безлюминофорные газоразрядные лампы тлеющего, дугового, высокочастотного и импульсного разрядов (трубки тлеющего разряда, лампы с парами натрия, импульсные лампы и др.).
Источниками света смешанного излучения называются такие, в которых имеют место одновременно и люминесценция, и тепловое излучение. Представителем этого класса источников света является, например, дуга высокой интенсивности, в которой свечение дуги обусловлено явлением электролюминесценции редкоземельных элементов, поступающих из фитиля анода в межэлектродное пространство, а свечение раскаленного анода является тепловым излучением.
По назначению (областям применения) все электрические источники света можно разделить на следующие основные классы: 1) общего назначения — для общего освещения помещений и открытых пространств; 2) местного освещения — для освещения индивидуальных рабочих мест; 3) транспортные; 4) для сигнализации и индикации; 5) для оптических систем и приборов; 6) метрологические; 7) для технологических целей; 8) для специальных светотехнических систем и установок.
По конструктивно-технологическим признакам источники света разделяют прежде всего на три крупных класса:
1.лампы накаливания;
2.газоразрядные лампы низкого давления;
3.газоразрядные лампы высокого давления.
Каждый из этих классов имеет специфические конструктивно-технологические особенности. Для ламп накаливания такими особенностями, объединяющими все лампы накаливания в один Класс, являются: вольфрамовое спирализованное тело накала, относительно малые габариты, высокий уровень механизации и автоматизации сборочных операций. Газоразрядные лампы низкого давления, входящие во второй класс, объединяет наличие анода и катода, обеспечивающих электрический разряд в лампе; присутствие ртутных паров в лампе и наличие люминофора на колбе; как правило, относительно большая длина ламп.
Класс газоразрядных ламп высокого давления отличается следующими общими признаками: специфическая конструкция анода и катода; наличие деталей из кварца и тугоплавкого стекла, а также других тепло- и термостойких материалов; использование в большинстве случаев двух колб (кварцевая горелка и наружная колба); применение фольговых молибденовых впаев усложненной конструкции; сравнительно невысокая производительность технологического оборудования.
Световые величины

Люмен
Люмен — это 1/683 ватта светового монохроматического, то есть строго одноцветного, излучения с длиной волны 555 нм, соответствующей максимуму кривой спектральной чувствительности глаза. Величина 1/683 появилась исторически, когда основным источником света были обычные свечи, и излучение только появлявшихся электрических источников света сравнивалось со светом таких свечей. В настоящее время эта величина узаконена многими международными соглашениями и принята повсеместно.

Телесный угол
Световой поток от источников света — будь то простая спичка или сверхсовременная электрическая лампа — как правило, распространяется более или менее равномерно во все стороны. Однако с помощью зеркал или линз свет можно направить нужным нам образом, сосредоточив его в некоторой части пространства. Часть или доля пространства характеризуется телесным углом. Понятие «телесный угол» прямого отношения к свету не имеет, однако используется в светотехнике настолько широко, что без него невозможно объяснение многих светотехнических терминов и величин.

Cила света
Cила света — это отношение светового потока, заключенного в каком-либо телесном угле, к величине этого угла. Сила света измеряется в канделах (сокращенное русское обозначение кд, иностранное — cd). Слово кандела переводится на русский язык как свеча, и именно свечой называлась единица силы света в СССР до 1963 года.

Кандела
Одна кандела — это сила света источника, излучающего световой поток в телесном угле. Примерно такую силу света имеет обычная стеариновая свеча (отсюда ясно, что световой поток такой свечи равен примерно 12,56 люмен). Свет от какого-либо источника нужен, как правило, для того, чтобы осветить конкретное место — рабочий стол, витрину, улицы и т.п. Для характеристики освещения конкретных мест вводится еще одна световая величина — освещенность.

Освещенность
Освещенность — это величина светового потока, приходящаяся на единицу площади освещаемой поверхности. Если световой поток Ф падает на какую-то площадь S, то средняя освещенность этой площади (обозначается буквой Е) равна: Е = Ф/S . Единица измерения освещенности называется люксом(сокращенное обозначение в русскоязычной литературе — лк). Один люкс — это освещенность, при которой световой поток 1 лм падает на площадь в 1 квадратный метр: 1 лк = 1 лм/ 1 м2. Чтобы представить себе эту величину, скажем, что освещенность около 1 лк создается стеариновой свечой на плоскости, перпендикулярной направлению света, с расстояния 1 метр. Для сравнения: освещенность от полной Луны на поверхности Земли зимой на широте Москвы не превышает 0,5 лк; прямая освещенность от Солнца в летний полдень на широте Москвы может достигать 100 000 лк. Допустим, что на рабочем столе освещенность равна 100 лк. На столе лежат листы белой бумаги, какая-то папка черного цвета, книга в сером переплете. Освещенность всех этих предметов одинакова, а глаз видит, что листы бумаги светлее книги, а книга — светлее папки. То есть наш глаз оценивает светлоту предметов не по их освещенности, а по какой-то другой величине. Эта «другая величина» называется яркостью.

Яркость
Яркость поверхности S — это отношение силы света, излучаемой этой поверхностью в каком-либо направлении, к площади проекции этой поверхности на плоскость, перпендикулярную выбранному направлению. Как известно, площадь проекции какой-либо плоской поверхности на другую плоскость равна площади этой поверхности, умноженной на косинус угла между плоскостями. Если для светового потока, силы света и освещенности существуют специальные единицы измерения (люмен, кандела и люкс), то для единицы измерения яркости специального названия нет. Правда, в старых (до 1963 года) учебниках по физике, светотехнике, оптике и в другой технической литературе было несколько названий единиц измерения яркости: в русскоязычной — нит и стильб, в англоязычной — фут-ламберт, апостильб и др. Международная система СИ ни одну из этих единиц не приняла, а принятой единице измерения яркости специального названия не придумала. За единицу измерения яркости сейчас во всех странах принята яркость плоской поверхности, излучающей силу света в 1 кд с одного квадратного метра в направлении, перпендикулярном светящей поверхности, то есть 1 кд/м2. От чего же зависит яркость предметов? Прежде всего, конечно, от количества попадающего на них света. Но в приведенном примере на все предметы, лежащие на столе, попадает одинаковое количество света. Значит, яркость зависит и от свойств самих предметов, а именно — от их способности отражать падающий свет.

Отражение
Коэффициент отражения — это отношение величины светового потока, отраженного от какой-либо поверхности, к световому потоку, падающему на эту поверхность от какого-либо источника света или светильника. Чем выше коэффициент отражения предмета, тем более светлым он нам кажется. В приведенном примере с рабочим столом коэффициент отражения листов бумаги выше, чем переплета книги, а у этого переплета — выше, чем у папки. Коэффициент отражения материалов зависит как от свойств самих материалов, так и от характера обработки их поверхности. Отражение может быть направленным в какую-то одну сторону или рассеянным в определенном телесном угле. Возьмем лист обычной белой писчей бумаги или ватмана. С какой бы стороны и под каким бы углом мы на такой лист не смотрели, он кажется нам одинаково светлым, то есть яркость его по всем направлениям одинакова. Такое отражение называется диффузным или рассеянным; соответственно, поверхности с таким характером отражения также называются диффузными. Это не глянцевая бумага, большинство тканей, матовые краски, побелка, шероховатые металлические поверхности и многое другое. Но если мы начнем полировать шероховатую металлическую поверхность, то характер ее отражения начнет изменяться. Если поверхность отполирована очень хорошо, то весь падающий на нее свет будет отражаться в одну сторону. При этом угол, под которым отражается падающий свет, точно равен углу, под которым он падает на поверхность. Такое отражение называется зеркальным, а равенство углов падения и отражения света является одним из базовых законов светотехники: на этом законе основаны все методы расчетов прожекторов и светильников с зеркальной оптической частью. Кроме зеркального и диффузного отражения, существует направленно-рассеянное (например, от плохо отполированных металлических поверхностей, шелковых тканей или от глянцевой бумаги), а также смешанное (например, от молочного стекла). Кривая, характеризующая угловое распределение коэффициента отражения, называется индикатрисой отражения. Для поверхностей с диффузным отражением яркость связана с освещенностью простым соотношением: яркость зеркальной поверхности равна яркости отражающихся в ней предметов (источников света, потолка, стен и т.п.), умноженной на коэффициент отражения. Для оценки яркости предметов и поверхностей с направленно-рассеянным и смешанным отражением необходимо знать индикатрисы отражения. Четыре названных световых величины — световой поток, сила света, освещенность и яркость — это те важнейшие понятия, без знания которых невозможно объяснение работы источников света и осветительных приборов. Однако для такого объяснения необходимо еще и знание светотехнических характеристик материалов. С одной из таких характеристик — коэффициентом отражения — мы уже познакомились. Но в природе нет материалов, отражающих весь падающий на них свет. Та доля света, которая не отражается от материала, в общем случае делится еще на две части: одна часть проходит сквозь материал, другая поглощается в нем.

Коэффициенты пропускания и поглощения
Доля света, которая проходит сквозь материал, характеризуется коэффициентом пропускания, а доля, которая поглощается — коэффициентом поглощения. Соотношения между этими тремя коэффициентами — отражения, поглощения и пропускания — могут быть самыми разными, но во всех без исключения случаях сумма трех коэффициентов равна единице. В природе нет ни одного материала, у которого хотя бы один из трех коэффициентов был равен 1. Наибольшее диффузное отражение имеют свежевыпавший снег, химически чистые сернокислый барий и окись магния. Наибольшее зеркальное отражение у чистого полированного серебра и у специально обработанного алюминия.
Величина коэффициента пропускания указывается в справочной литературе для определенной толщины материала (обычно для 1 см). К наиболее прозрачным материалам можно отнести особо чистый кварц и некоторые марки полиметилметакрилата (органического стекла), у которых гипотетическое (реально несуществующее!) вещество с коэффициентом поглощения, равным 1, называется «абсолютно черным телом». Как и отражение, пропускание света может быть направленным (у силикатных или органических стекол, поликарбоната, полистирола, кварца и т.п.), диффузным или рассеянным (молочные стекла), направленно-рассеянным (матированные стекла) и смешанным.
Подавляющее большинство материалов по-разному отражает, пропускает или поглощает свет с разной длиной волны, то есть разного цвета. Именно это свойство материалов определяет их цвет и создает многокрасочность окружающего нас мира. Для полной характеристики светотехнических свойств материалов необходимо знать не только абсолютные значения их коэффициентов отражения, пропускания и поглощения, но и распределение этих коэффициентов в пространстве (индикатрисы) и по длинам волн. Распределение коэффициентов по длинам волн называется спектральными характеристиками (отражения, пропускания или поглощения). Все три названных коэффициента являются относительными (безразмерными) величинами и измеряются в долях единицы или в процентах (в тех же долях, умноженных на 100).

Добавить комментарий

Реклама

Помощь студентам