Влияние ионосферы на распространение радиоволн

Всякая система передачи сигналов состоит из трех основных частей:
передающего устройства,
приемного устройства
и промежуточного звена — соединяющей линии.
Для радиосистем промежуточным звеном является среда — пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т. е. в условиях, когда средой служит земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.
При распространении радиоволн в среде происходят изменение амплитуды поля волны (обычно уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов.
Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн. Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны) называют земными радиоволнами {1 на рис. 1). Рассматривая распространение земных волн, атмосферу считают средой без потерь с относительной диэлектрической проницаемостью е. равной единице.

Пути распространения радиоволн

Пути распространения радиоволн

Рис. 1. Пути распространения радиоволн
Влияние атмосферы учитывают отдельно, внося необходимые поправки. В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.
Ионосферой называется область атмосферы на высоте 60—10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т. е. имеется большое число свободных электронов (примерно 103—106 электронов в 1 см3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами 3.
На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Наличие в верхних слоях атмосферы свободных электронов определяет электрические параметры ионизированного газа — его диэлектрическую проницаемость ? и проводимость ?
Число электронов, содержащихся в единице объема воздуха, называется электронной плотностью Na (см-3)
Электронная и ионная плотности ионосферы непостоянны по высоте, что приводит к преломлению и отражению радиоволн в ионосфере.

Распределение плотности электронов по высоте атмосферы.

Распределение плотности электронов по высоте атмосферы.

Рис. 2 Распределение плотности электронов по высоте атмосферы.
Объемные неоднородности ионизированного газа вызывают рассеяние радиоволн Указанные явления определяют условия распространения радиоволн в ионосфере и в одних случаях могут быть использованы, а в других должны быть учтены при работе радиолиний.
Ионосфера в целом является квазинейтральной, т.е. количества имеющихся в ней положительных и отрицательных зарядов равны.
Температура газа, начиная с высоты h = 80 км, плавно возрастает, достигая 2000—3000 К при h=500—600 км Возрастание температуры с высотой в области ионосферы объясняется тем, что воздух здесь нагревается непосредственно излучением Солнца.
Основным источником ионизации земной атмосферы являются электромагнитные волны солнечного излучения длиной короче 0,1 мкм — нижний участок ультрафиолетового диапазона и мягкие рентгеновские лучи, а также испускаемые Солнцем потоки заряженных частиц Ультрафиолетовые и рентгеновские лучи производят ионизацию только на освещенной части земного шара и более интенсивно в приэкваториальных областях Заряженные частицы движутся по спиральным линиям в направлении магнитных силовых линии к магнитным полюсам земного шара и производят ионизацию главным образом в полярных областях Считают, что ионизирующее действие потока частиц составляет не более 50% ионизирующего действия ультрафиолетового излучения Солнца.
Ионизацию создают также метеоры, вторгающиеся в земную атмосферу со скоростями 11—73 км/с Кроме повышения среднего уровня ионизации метеоры создают местную ионизацию за метеором образуется столб ионизированного газа, который быстро расширяемся и рассеивается, существуя в атмосфере от одной до нескольких секунд Такие ионизированные следы метеоров образуются на высоте 80—120 км над земной поверхностью Характеристика метеорных частиц, попадающих в земную атмосферу, и плотность ионизированного следа, оставляемого ими, приведены в табл 1.

Масса частиц
т, г Радиус частиц,
см Число частиц падающих ежедневно на Землю Электронная плотность, Nэ см-3
1 0,4 105 2 1015
10-3 0.04 108 2 1014
10-5 0,008 1010 5 1013

После прекращения действия источника ионизации электронная плотность спадает по гиперболическому закону Поэтому с за ходом Солнца ионизация в нижних слоях ионосферы исчезает не мгновенно, а в верхних слоях — сохраняется в течение всей ночи.
Заметная электронная плотность появляется в атмосфере начиная с высоты примерно 60 км. Далее электронная плотность ионосферы меняется с высотой над земной поверхностью, а следовательно, и электрические свойства ионосферы неоднородны по высоте.
При распространении радиоволны в неоднородной среде ее траектория искривляется. При достаточно большой электронной плотности искривление траектории волны может оказаться настолько сильным, что волна возвратится на поверхность Земли на некотором расстоянии от места излучения, т. е. произойдет отражение радиоволны в ионосфере.
Отражение радиоволн, посланных с поверхности Земли на ионосферу, происходит не на границе воздух — ионизированный газ, а в толще ионизированного газа. Отражение может произойти только в той области ионосферы, где диэлектрическая проницаемость убывает с высотой а, следовательно, электронная плотность возрастает с высотой, т. е. ниже максимума электронной плотности ионосферного слоя.

Схема отражения радиоволн от ионосферы

Схема отражения радиоволн от ионосферы

Рис. 3. Схема отражения радиоволн от ионосферы.
Условие отражения связывает угол падения волны на нижнюю границу ионосферы ? с диэлектрической проницаемостью в толще самой ионосферы на той высоте, где происходит отражение волн (рис. 3):
sin?0 = ?n1/2 = (1 — 80,8Ne/f2)1/2
Здесь и далее Nэ — плотность электронов, см3, а частота f в кГц.
Чем больше значение Nэ, тем при меньших углах ?о возможно отражение. Угол ?о, при котором в данных условиях еще возможно отражение, называют критическим углом.

Отсюда можно определить рабочую частоту f? при которой волны отразятся от ионосферы в случае заданных электронной плотности и угле падения:
f? = (80,8Ne/cos?0)1/2
Если волна нормально падает на ионосферу, то
f? = (80,8 Ne)1/2 = f0
При нормальном падении волны отражение происходит на тон высоте, где рабочая частота равна собственной частоте ионизированного газа и, следовательно, ?=0. При наклонном падении на этой высоте могут отразиться радиоволны с более высокой частотой. Выполняется так называемый закон секанса, заключающийся в том, что при наклонном падении отражается волна частотой, в sec?о раз превышающей частоту волны, отражающейся при вертикальном падении волны на слой заданной электронной плотности:
f? = f0 sec?0
Чем больше электронная плотность, тем для более высоких частот выполняется условие отражения.
Максимальная частота, при которой волна отражается в случае вертикального падения на ионосферный слой, называется критической частотой fкр, отражение происходит вблизи максимума ионизации слоя:
fкр = (80,8 Neмакс)1/2
Сферичность Земли ограничивает максимальный угол ?о :
sin ?макс = R0/(R0 + h0)
а следовательно, и максимальные частоты радиоволн, которые могут отразиться от ионосферы при данной электронной плотности.
К диапазону сверхдлинных волн (СДВ) относят волны длиной от 10 000 до 100 000 м (f = 30—3 кГц), а к длинным волнам (ДВ)—волны от 1000 до 10000 м (f = 300-30 кГц).
Токи проводимости для диапазонов СДВ и ДВ существенно преобладают над токами смещения для всех видов земной поверхности. Поэтому при распространении поверхностной волны происходит лишь незначительное проникновение ее энергии в глубь Земли. Сферичность Земли, служащая препятствием для прямолинейного распространения радиоволн, до расстояний 1000—2000 км остается соизмеримой с длиной волны, что способствует хорошему огибанию длинными волнами земного шара благодаря дифракции. Незначительные потери и oгибание земной поверхности обусловили возможность ДВ и СДВ распространяться земной волной на расстояние до 3000 км.
Начиная с расстояния 300—400 км помимо земной волны присутствует волна, отраженная от ионосферы. С увеличением расстояния напряженность электрического поля отраженной от ионосферы волны увеличивается, и на расстояниях 700—1000км поля земной и ионосферной волн становятся примерно равными. Суперпозиция этих двух волн дает интерференционную картину поля.
На расстоянии свыше 3000 км ДВ и СДВ распространяются только ионосферной волной. Для отражения длинных волн достаточно небольшой электронной плотности, так что днем отражение этих волн может происходить на нижней границе слоя D, а ночью—на нижней границе слоя Е. Проводимость в этой области ионосферы для ДВ довольно значительна (но в тысячи раз меньше, чем проводимость сухой земной поверхности) и токи проводимости оказываются того же порядка, что и токи смещения Следовательно, нижняя область ионосферы для ДВ обладает свойствами полупроводника.
На ДВ и особенно на СДВ электронная плотность слоев D и Е меняется резко на протяжении длины волны. Поэтому и отражение здесь происходит как на границе раздела воздух — полупроводник, без проникновения радиоволны в толщу ионизированного газа. Этим обусловлено слабое поглощение ДВ и СДВ в ионосфере.
Расстояние от земной поверхности до нижней границы ионосферы составляет 60—100 км, т. е. того же порядка, что и длина волн (ДВ и СДВ), так что волны распространяются между двумя близко расположенными полупроводящими концентрическими сферами, одной из которых является Земля, а другой — ионосфера. Условия распространения при этом примерно такие же, как и в диэлектрическом волноводе.
Как и во всяком волноводе, можно отметить оптимальные волны — волны, распространяющиеся с наименьшим затуханием, и критическую волну. Для волновода, образованного Землей и ионосферой, оптимальными являются волны длиной 25 — 35 км, а критической — волна длиной 100 км. Подобно законам распространения радиоволн в обычных волноводах, в сферическом ионосферном волноводе фазовая скорость радиоволн превышает скорость света в свободном пространстве.
К диапазону средних волн (СВ) относят радиоволны ?= 100 — 1000 м (f = 0,3 — 3 МГц). Диапазон СВ используется для радиовещания, радионавигации, радиотелеграфной и радиотелефонной связи; СВ могут распространяться как земными, так и ионосферными волнами.
Напряженность электрического поля земных волн определяется для малых расстояний, а для больших расстояний — по законам дифракции. СВ испытывают значительное поглощение в полупроводящей поверхности Земли, поэтому дальность распространения земной волны ограничена расстоянием 1000 км. Следует также учитывать, что неровности земной поверхности снижают эффективную проводимость почвы. Приближенно для равнинной местности ?эфф = (0,5—0,7)?, для, холмистой ?эфф= (0,15—0,2)?, для районов вечной мерзлоты ?эфф = ?.

Ближние и дальние замирания на средних волнах

Ближние и дальние замирания на средних волнах

Рис. 4. Ближние и дальние замирания на средних волнах.

1 — земная волна;
2 — волна, отразившаяся от ионосферы один раз;
3 — волна, отразившаяся от ионосферы дважды.
На большие расстояния СВ, распространяются только в ночное время путем отражения от слоя Е ионосферы, электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения СВ расположен слой D, который чрезвычайно сильно поглощает энергию этих волн. Поэтому при обычно применяемых мощностях передатчиков напряженность электрического поля на больших расстояниях оказывается недостаточной для приема и в дневные часы распространение СВ происходит практически только земной волной. Ионосферные возмущения не влияют на распространение СВ, так как слой Е мало нарушается во время ионосферно-магнитных бурь.
Замирания на средних волнах наблюдаются только в ночные часы, когда на некотором расстоянии от передатчика возможен приход одновременно пространственной и поверхностной волн в точку В, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля во времени, называемому ближним замиранием. На значительное расстояние от передатчика (точка С) могут прийти волны путем одного или двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности поля, называемому дальним замиранием. Скорость замираний невелика (период замираний составляет 1— 2 мин). Статистические характеристики замираний не исследованы.
Для борьбы с замиранием на передающем конце радиолинии применяются антенны с диаграммами направленности, прижатыми к земной поверхности. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.
К диапазону коротких волн (KB) относят волны длиною от 10 до 100 м (f = 30— 3 МГц). Волны KB диапазона распространяются земной волной на расстояние не более 100 км вследствие сильного поглощения в земной поверхности и плохих условий дифракции.

Схема распространения KB на большие расстояния

Схема распространения KB на большие расстояния

Рис. 5 Схема распространения KB на большие расстояния.
а — интерференция волн, отраженных однократно и двукратно от ионосферы,
1 — поверхностная волна;
2—волна, распространяющаяся путем одного отражения от ионосферы;
3 — волна, распространяющаяся путем двух отражений от ионосферы;
4 — волна, рабочая частота которой больше максимально допустимой;
б — интерференция рассеянных волн;
в—интерференция магниторасщепленных составляющих волн.
Распространение KB ионосферной волной происходит путем последовательного отражения от слоя F (иногда слоя Е) ионосферы и поверхности Земли. При этом волны проходят через нижнюю область ионосферы — слои Е и D, в которых претерпевают поглощение (рис. 5, а). Для осуществления радиосвязи на KB должны быть выполнены два условия: волны должны отражаться от ионосферы и напряженность электромагнитного поля в данном месте должна быть достаточной для приема, т. е. поглощение волны в слоях ионосферы не должно быть слишком большим. Эти два условия ограничивают диапазон применимых рабочих частот.

Для отражения волны необходимо, чтобы рабочая частота была не слишком высокой, а электронная плотность ионосферного слоя достаточной для отражения этой волны в соответствии с (3-44). Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона.
Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере (см. рис. 5). Наименьшая применимая частота (НПЧ) определяется из условия, что при данной мощности передатчика напряженность электромагнитного поля должна быть достаточной для приема.
Электронная плотность ионосферы меняется в течение суток и в течение года. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток:
— днем работают на волнах 10—25 м, а ночью на волнах 35—100 м.
Необходимость правильного выбора длины волны для сеансов связи в различное время усложняет конструкцию станции и работу оператора.
Зоной молчания KB называют кольцевую область, существующую на некотором расстоянии от передающей станции, в пределах которой невозможен прием радиоволн. Появление зоны молчания объясняется тем, что земная волна затухает и не достигает этой области, а для ионосферных волн, падающих под малыми углами на ионосферу, не выполняются условия отражения. Пределы зоны молчания (ВС) расширяются при укорочении длины волны и снижении электронной плотности.
Замирания в диапазоне KB более глубоки, чем в диапазоне СВ. Основной причиной замираний является интерференция лучей, распространяющихся путем одного и двух отражений от ионосферы. Помимо этого замирания вызываются рассеянием радиоволн на неоднородностях ионосферы и интерференцией рассеянных волн, а также интерференцией обыкновенной и необыкновенной составляющих магниторасщепленной волны.
При благоприятных условиях распространения KB могут огибать земной шар один и несколько раз. Тогда помимо основного сигнала может быть принят второй сигнал, запаздывающий примерно на 0,1 с и называемый радиоэхо. Радиоэхо оказывает мешающее действие, на линиях меридионального направления.
Радиосвязь на KB претерпевает нарушения, основной причиной которых являются ионосферно-магнитные бури. При этом слой F разрушается и отражение KB становится невозможным. Наиболее часто эти нарушения наблюдаются в приполярных районах и длятся от нескольких часов до двух суток. Второй вид нарушений — внезапные поглощения (наблюдаются только на освещенной части земного шара), которые длятся от нескольких минут до нескольких часов. Часто оба вида нарушений связи возникают одновременно.?

Рассказать друзьям

Опубликовать в Google Buzz
Опубликовать в Google Plus
Опубликовать в LiveJournal
Опубликовать в Мой Мир
Опубликовать в Одноклассники

Добавить комментарий

Найти готовую работу