Измерители времени. Служба времени

На судне время необходимо для большого количества как навигационных, так и организационных целей. Для поддержания точного времени, на судне действует судовая служба времени. Эта служба находится в ведении третьего помощника капитана, заведующего штурманским имуществом, и контролируется капитаном. Задачами судовой службы времени являются: • хранение точного времени, то есть эталона времени на судне; • приём сигналов точного времени и получение поправок часов; • наблюдение за работой часов на судне и обеспечение достаточно точным временем наблюдателей, рабочих мест и жилых помещений. Для выполнения этих задач на судне имеется ряд инструментов от высокоточных часов – хронометров до настенных часов размещаемых в помещени-ях. Помимо этого для измерения промежутков времени используются секундомеры. Приём сигналов обеспечивается специальным или общим радиоприемником и транслируется в штурманскую рубку. Хронометр представляет собой высокоточные пружинные часы особого устройства. Выставляется он приблизительно по времени гринвичского меридиана. Хронометр должен обеспечивать получение ТГР с точностью до 1с. Отличие его показаний от ТГР называется поправкой хронометра UХР и определяется по сигналам точного времени по формуле: UХР = ТГР – TХР или по известному суточному ходу хронометра  по формуле: UХР = UХР + Tд, где UХР – точно известная на какой-либо момент времени (полученная по сигналам точного времени) поправка хронометра; Похожие статьи

Измерение времени. Системы измерения времени в астрономии.

В задачи мореходной астрономии входят вопросы измерения времени, а именно, установление принципов измерения времени, единиц измерения и систем счёта времени. В качестве единицы измерения времени может быть принята величина, периодически повторяющаяся и совершенно одинаковой длительности. Кроме того, она должна быть удобна для применения в повседневной жизни. Звёздное время. Достаточно точным периодом обладает вращение небесной сферы. Один полный оборот небесной сферы даёт нам единицу измерения – звёздные сутки. Звёздными сутками называется промежуток времени между двумя последовательными одноимёнными кульминациями точки весеннего равноденствия (точки Овна ) на одном и том же меридиане. За начало звёздных су-ток принимается момент верхней кульминации точки  на данном меридиане. Звёздным временем называется промежуток времени от момента верх-ней кульминации точки  до данного момента выраженный в звёздных единицах. Из основной единицы звёздного времени – звёздных суток, получаются более мелкие единицы: звёздный час, равный 1/24 части звёздных суток; звёздная минута, равная 1/60 части звёздного часа; звёздная секунда, равная 1/60 части звёздной минуты. Поскольку вращение сферы проходит равномерно, то продолжительность её поворота может оцениваться дугой экватора, т. е. часовым углом. Следует отчётливо представлять себе, что время не есть дуга, а только числен-но приравнивается к дугам часовых углов для удобства применения. На этом основании величина часового угла точки  может служить Читать дальше …

Заказать решение контрольных работ по астрономии. Вариант 5

Написание контрольной работы по астрономии качественно и в срок. Любые способы оплаты. Договор и гарантия на работы. Заказывайте на нашем сайте за 5 минут — решим за 3 дня. Пример контрольной работы по астрономии вариант 5 представлен на сайте. Задание 1 По таблицам ВАС-58 рассчитать поправку компаса, проверить с помощью ЭКВМ или ПЭВМ. 06/04/2004 Тс=22ч40м; ОЛ=11.8; φс=51°35.0’N; λc=161°22.0’E; КП=148.8°; Тхр=11ч39м52с; Uхр=6.5с; КК=090°; Спика Определяем номер часового пояса (λ делим на 15°):: λ=161°20.0’E – N=11E Вычисляем приближенное Тгр: Тс= 22ч40м 06/04 -N= 11 ______________________ Тгр= 11ч40м 06/04 Тхр= 11ч39м52с Uхр= +00ч00м07с ________________________ Тгр= 11ч39м59с 06/04 _________________________ Sгр= 010º05.6’ (находим по МАЕ-2004 по Тгр) λ= +161°22.0’E ________________________ Sм= 171º27.6’ τ= +158º38.6’ (видимые места звезд МАЕ-2004) __________________________ tм= 330º06.2’W=029º53.8’E δ= 11º11.1’S (видимые места звезд МАЕ-2004) 1 Зад. Табл. Зад.-Табл. hT 21 º 54,1 ´ AT 148,1 º φ 51 º 35,0 ´ N 52 º Δφ -25 ´ Δhφ 21,2 ´ ΔAφ -0,1 º δ 11 º 11,1 ´ S 11 º Δδ 11,1 ´ Δhδ -10,5 ´ ΔAδ 0,0 º t 29 º 53,8 ´ E 30 º Δt -6,2 ´ Δht 2,0 ´ ΔAt 0,1 º q 161 º Δhд 0,0 ´ ΣΔA 0,0 º ΣΔh 12,7 ´ Ac 148,1 º Читать дальше …

Основные задачи Мореходной астрономии

Условно задачи, решаемые в курсе «Мореходная астрономия» можно разделить на три категории: Основные задачи, к которым относятся задачи на Определение Места Судна (ОМС), и задачи на определение поправки компаса. Вспомогательные задачи, служащие для определения дополнительных параметров, используемых для облегчения, ускорения и контроля решения основных задач. К этой категории можно отнести задачи на расчёт восхода, за-хода и кульминации светил; определение наименования светил и подбор светил на заданный момент наблюдений при помощи звёздного глобуса; задачи на перевод времени; расчёт точности навигационных параметров и пр. К этой же категории можно отнести и задачи на вспомогательной небесной сфере рассмотренные в предыдущем параграфе. Промежуточные задачи. Понятие промежуточных задач вводится в данном практическом курсе, для облегчения понимания решения основных задач. Каждая такая задача, представляя собой теоретически и математически законченный модуль, является как бы кирпичиком, из которых строится решение основных и вспомогательных задач. Эти задачи являются совершенно разнородными с точки зрения теории, и обоснованию каждой такой задачи может быть посвящён целый раздел теоретического курса. На практике же эти задачи решаются совместно, дополняя друг друга. К этим задачам можно отнести задачи на перевод времени; расчёт склонений и часовых углов светил; расчёт счислимых азимута и высоты светила; исправление высот светил; отыскание вероятнейшего места судна и пр. Ещё раз хотим Читать дальше …

Мореходная астрономия.

Современные радионавигационные методы позволяют определять место судна практически в любой точке мирового океана и при любых условиях погоды. Кроме того, получившие в последнее время исключительное развитие системы спутниковой навигации перекрыли в практически все участки мирового океана, в которых осуществляется судоходство. И всё же такие методы не являются универсальными, прежде всего по причине их неавтономности, а при некоторых обстоятельствах и ненадёжности в работе, приёме сигналов и т.д. В связи с этим при весьма значительных удалениях от берега единственно надёжным и, главное, автономными способами определения места судна являются астрономические методы, которые за последние годы также получили дальнейшее развитие. Так, радиосекстан., улавливающий космическое излучение Солнца, позволяет определять место судна непрерывно в течение всего времени пребывания его над горизонтом, при любой погоде и любом состоянии моря. Поэтому роль мореходной астрономии в общем комплексе наук судовождения остаётся по-прежнему большой. Искусство астрономических наблюдений и их обработка по-прежнему остаётся надёжным для обеспечения нужд морских, в том числе промысловых судов. Судоводитель должен уверенно и безопасно вести судно, используя при прокладке на карте показания гирокомпаса и лага, учитывая ветер и течение. Другими словами, он должен уметь грамотно вести счисление пути судна. Для контроля правильности счисления судоводитель должен уметь определять место судна различными методами: навигационным, радионавигационным и астрономическим. В открытом Читать дальше …

Навигационная астрономия решение задач заказать

Вы можете заказать свой вариант решения контрольной работы или задач по навигационной астрономии. Выполним расчеты в короткие сроки. Гарантии. Только проверенные авторы. 1.Построить небесную сферу и определить координаты светила φ=30ºS h=30º (зеленым) A=60ºSE (красным) Строим небесную сферу. Проводим отвесную линию зенит-надир и перпендикулярно ей строим полуденную линию и круг истинного горизонта. Отмечаем повышенный полюс PS (поднят над истинным горизонтом на угол φ=30ºS). Перпендикулярно оси мира строим небесный экватор. На плоскости истинного горизонта откладываем азимут светила A=600ºSE (красным цветом). Строим вертикал светила. На вертикале откладываем высоту светила (зеленым цветом). Получили место светила. Строим круг склонений (параллель светила).На меридиане светила получаем склонение (голубым цветом). От полуденной части меридиана наблюдателя до меридиана светила по экватору откладываем часовой угол светила. Приближенно из чертежа определяем величины: δ=60ºS (голубым цветом) t=75ºЕ (фиолетовым цветом) Похожие статьи

Звездное время

Звёздное время, s — часовой угол точки весеннего равноденствия. Звёздное время используется астрономами, чтобы определить, куда надо направить телескоп, чтобы увидеть нужный объект. Определять звездное время принято по точке весеннего равноденствия. Промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия на одном и том же меридиане называется звездными сутками. За начало звездных суток на данном меридиане принимается момент верхней кульминации точки весеннего равноденствия (рис. 3.1). Звездное время измеряется часовым углом точки весеннего равноденствия. В момент начала звездных суток точка весеннего равноденствия находится в верхней кульминации и поэтому ее часовой угол равен 0. Так как Земля непрерывно вращается вокруг своей оси, то с течением времени часовой угол будет увеличиваться и по его значению можно судить о протекшем времени. Таким образом звездным временем S называется западный часовой угол точки весеннего равноденствия. Следовательно, звездное время на данном меридиане в любой момент численно равно часовому углу точки весеннего равноденствия. Рассматривая звездное время, следует иметь в виду, что точка весеннего равноденствия находится на бесконечно большом расстоянии и поэтому движение Земли по орбите не изменяет ее видимого положения на небесной сфере. Период вращения Земли относительно точки весеннего равноденствия остается неизменным. Поэтому звездные сутки имеют постоянную продолжительность. Звездное время широко применяется в авиационной астрономии. Для гринвичского Читать дальше …

Орбита Луны. Собственное движение Луны. Видимая орбита Луны

Орбита Луны — траектория, по которой Луна вращается вокруг общего с Землёй центра масс, располагающегося примерно в 4700 км от центра Земли. Каждый оборот занимает 27,3 земных суток и называется сидерическим месяцем. Луна является естественным спутником Земли и ближайшим к ней небесным телом. Рис. 1. Орбита Луны Рис. 2. Сидерический и синодический месяцы Она обращается вокруг Земли по эллиптической орбите в том же направлении, что и Земля вокруг Солнца. Среднее расстояние Луны от Земли равно 384 400 км. Плоскость орбиты Луны наклонена к плоскости эклиптики на 5.09’ (рис. 1). Точки пересечения орбиты Луны с эклиптикой называются узлами лунной орбиты. Движение Луны вокруг Земли для наблюдателя представляется как видимое ее движение по небесной сфере. Видимый путь Луны по небесной сфере называется видимой орбитой Луны. За сутки Луна перемещается по видимой орбите относительно звезд примерно на 13,2°, а относительно Солнца на 12,2°, так как Солнце за это время тоже перемещается по эклиптике в среднем на 1°. Промежуток времени, в течение которого Луна совершает полный оборот по своей орбите относительно звезд, называется звездным, или сидерическим, месяцем. Его продолжительность равна 27,32 средних солнечных суток. Промежуток времени, в течение которого Луна совершает полный оборот по своей орбите относительно Солнца, называется с cинодическим месяцем. Похожие статьи